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Abstract: Citrus flies are important quarantine pests in citrus plantations. Electronic traps (e-traps)
based on computer vision are the most popular types of equipment for monitoring them. However,
most current e-traps are inefficient and unreliable due to requiring manual operations and lack of
reliable detection and identification algorithms of citrus fly images. To address these problems, this
paper presents a monitoring scheme based on automatic e-traps and novel recognition algorithms. In
this scheme, the prototype of an automatic motor-driven e-trap is firstly designed based on a yellow
sticky trap. A motor autocontrol algorithm based on Local Binary Pattern (LBP) image analysis
is proposed to automatically replace attractants in the e-trap for long-acting work. Furthermore,
for efficient and reliable statistics of captured citrus flies, based on the differences between two
successive sampling images of the e-trap, a simple and effective detection algorithm is presented to
continuously detect the newly captured citrus flies from the collected images of the e-trap. More-
over, a Multi-Attention and Multi-Part convolutional neural Network (MAMPNet) is proposed to
exploit discriminative local features of citrus fly images to recognize the citrus flies in the images.
Finally, extensive simulation experiments validate the feasibility and efficiency of the designed e-trap
prototype and its autocontrol algorithm, as well as the reliability and effectiveness of the proposed
detection and recognition algorithms for citrus flies.

Keywords: pest management; automatic motor-driven e-trap; computer vision; citrus fly detection
and recognition; convolutional neural networks

1. Introduction

Citrus flies such as Bactrocera minax and B. dorsalis are significant pests in citrus plan-
tations because large-scale citrus fly disasters will lead to serious yield reduction and
economic loss [1]. However, it is challenging to control and prevent extensive disaster prop-
agation due to the characteristics of citrus flies, e.g., rapid reproduction, flying across wide
areas, and insecticide resistance [2,3]. Therefore, in order to predict a critical point of the
occurrence of a large-scale disaster for early warning and conducting prevention measures,
it is very important to continuously monitor their community structures, quantitative dis-
tributions, and corresponding weather conditions [4,5]. However, it is difficult to build an
automatic system for continuously monitoring citrus fly pests in an extensive area because
such a system involves the multiple disciplines of biology, automation, communication,
and information. Currently, the task of monitoring citrus flies is usually done manually by
technicians, which requires a great deal of human resources to collect and analyze the data
from orchards.

Recently, advancements in electronic traps (e-traps) have made it possible to construct
a distributed system for monitoring citrus flies. In the previous works [4–9], a popular
and promising system scheme is deployed using a large number of e-traps with computer
vision and wireless communication. Therein, such an e-trap mainly consists of two parts: a
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trap and an embedded device. In general, the trap is in charge of attracting and capturing
flies. An embedded device with a camera, meteorological sensors, and a wireless commu-
nication module is usually installed in the trap. It is responsible for collecting images of
flies captured on the trap and weather data and transmitting them to the remote server.
By deploying the e-traps at some distributed locations, the area-wide field data can be
collected for statistical analysis of citrus fly pests [5,9].

For monitoring citrus flies, an effective and easily-used trap is a prerequisite because
the number and species of captured flies on e-traps contain essential information regarding
their communities and distributions. There are two commonly-used categories of traps, i.e.,
the McPhail trap [7,10] and the yellow sticky paper [4,11]. The McPhail trap is the plastic
and barrel-like equipment with several special entries, which contains liquid attractants.
Flies are trapped in the liquid, and images of the liquid surface are sampled for detecting
them. The yellow sticky paper is usually made by smoothly smearing some sticky materials
on a special kind of yellow paper, where attractants are integrated into the paper or sticky
materials. Citrus flies are stuck on the sticky paper, and the images of the paper are directly
sampled to monitor the citrus flies. The previous research shows that the two kinds of
traps can effectively capture citrus flies when using some appropriate attractants [4,5,7–11].

However, the images sampled by the current e-traps are possibly low-quality for pest
recognition and statistics. For example, the trapped insects may be overlapped in the liquid
or on the paper when a certain number of insects are captured [4,5,9], which will seriously
affect the subsequent steps, i.e., detecting and recognizing the insects in the sampled images.
Furthermore, a more significant shortcoming is that the attractants must be replaced
manually every week due to the gradually reduced attractant efficacy [12,13]. To address
the problems, we design an automatic motor-driven e-trap and its control algorithm based
on image analysis, in which the yellow paper is rolled and stored, as shown in Figure 1.
By evaluating the sampled images of the e-trap, the yellow paper can be automatically
renewed according to the density of captured insects. Furthermore, the yellow paper can
also be renewed by using a timer, which ensures that the validation date of the attractants
is not expired. To our best knowledge, few previous pest traps may operate continuously
without human maintenance of replacing attractants, except for the traps developed by
the Trapview company https://www.trapview.com (accessed on 8 April 2021), whose
principles of reserving and automatically replacing attractants are different from ours.

Figure 1. (a) Basic structures and functions of the designed e-trap. (b) The monitoring system of citrus flies by deploying
the distributed e-traps.

Besides the efficient acquisition of high-quality images of the e-trap, detecting insects
in the e-trap images and recognizing their species are the keys to pest statistics. The detec-
tion task pays attention to locating the insects and segmenting them from the images of
the e-trap. In general, insect detectors can be classified into two categories: hand-crafted
detectors [7,14] and feature-learning-based ones [6,9,15–17]. For example, a combination
of feature matching and Kalman filters in the HSV color space was designed to detect the
B. dorsalis [14]. Romanos et al. fine-trained the complicated R-CNN model to detect the

https://www.trapview.com
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olive fruit fly [16]. However, the above methods operate on a single image and omit the
relations between two successively sampled images. In this work, according to the pure
image background of the e-trap, a simple and efficient detector based on the inter-sampling
difference algorithm [18] is designed to detect the newly captured insects in the current
sampled image.

Differing from the insect detection, recognizing the species of one citrus fly in an
image is a fine-grained visual classification (FGVC) task [19,20], which focuses on the
classification of similar categories in a super-category, e.g., classifying different breeds
of dogs [21] and species of birds [22]. This is because most species of citrus flies fall in
the same order of Diptera and some species have subtle differences only on some parts,
e.g., the wings and thoraces. The recognition accuracy relies specifically on the robustness
and capability of an image feature representation because the inter-species differences
are much less than the intra-species variations, which are caused by different viewpoints,
poses, illuminations, and scales, etc. In the early work of fruit fly identification [9,23–25],
some hand-crafted local descriptors, e.g., the Gabor in [9], SIFT and SURF in [24], were
adopted to extract colors, textures, contours and other features, and the Support Vector
Machine (SVM) [26] was used to perform classifications. The work mostly operates on
small datasets or in constrained conditions, e.g., requiring manual image alignment and
segmentation in [25].

Recently, advancements in deep learning have led to a great deal of Convolution
Neural Networks (CNNs)-based works for the identification of fruit flies’ species [27–31],
which demonstrates the strong robustness and capability of CNNs in contrast to the hand-
crafted descriptors. However, most work directly adopts existing pre-trained models or
fine-trains them to perform classifications [27–31], which omits the characteristic of fine-
grained classification in this recognition task of citrus flies. Inspired by the advancements
of CNNs in the FGVC domain [32–38], e.g., the network architectures detecting and
combining parts [32–34] and the attention mechanism based schemes [35–38], we proposed
a Multi-Attention and Multi-Part convolutional neural Network (MAMPNet) to exploit
the discriminative features of local vital parts such as wings, thoraces, and abdomens
according to the expert knowledge of identifying the species of citrus flies.

To validate our work, we first synthesize images and videos to simulate the trap with
insects and the process of replacing the yellow paper. Then, extensive experiments on the
simulated images and videos are designed to analyze and verify the image-analysis-based
autocontrol algorithm of the e-trap and the insect detection method. The experiment
results show that our autocontrol algorithm can enable the e-trap to successfully replace the
yellow sticky paper with an accuracy of 100% by controlling the motor in the simulation
environment. The target citrus fly pests can be detected with an accuracy of 99.3% while
holding a low False Acceptance Rate (FAR). Furthermore, a large number of evaluation
and comparison experiments of citrus fly identification are performed on the constructed
dataset Citrus flies, which consists of about 6000 images and covers 15 species of insects
possibly captured by the e-trap. The recognition accuracy of 95.6% shows the deployment of
e-traps can statistically count up each species of citrus fly pests, evaluate their propagation
trends and community distributions, and further provide an early warning of a large-scale
disaster of citrus fly pests, e.g., the B. minax and B. dorsalis.

In this work, in order to efficiently monitor citrus fly pests, our design e-trap and
monitoring system have the following characteristics. (1) Our designed motor-driven e-trap
and its autocontrol algorithm based on image analysis can ensure continuous monitoring
of citrus fly pests without human participation maintenance. Namely, it preserves the
new, unused yellow paper in its cavity, and its motor-driven electromechanical parts
automatically replace the used paper with the preserved new paper according to the insect
density on the e-trap or its working time. (2) The proposed fast detection algorithm of
insects can detect and segment the target citrus fly pests with an accuracy of 99.3%, and our
MAMPNet can identify the species of citrus flies captured on the e-trap with an accuracy
of 95.6%. This completely meets the practical requirement of monitoring the citrus fly pests.
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(3) The proposed scheme for an automatic monitoring system of citrus flies may raise the
efficiency of pest management and reduce labor costs because it may automatically collect
images of citrus flies, recognizes their species, and analyzes pest data. (4) Our e-trap and
monitoring scheme possibly applies to some other species of agricultural pests that are
flyable and attractable by adopting appropriate attractants in the sticky paper.

2. Materials and Methods

Two essential factors for monitoring citrus fly pests are to effectively trap citrus
flies and statistically count up their species and quantities. In the following subsections,
the design scheme of our e-trap is described in detail to explain why our designed e-
trap can effectively and continuously trap citrus fly pests and sample their images in
Section 2.1. Then, in Section 2.2, the image analysis-based autocontrol algorithm of the
e-trap is presented to ensure that the e-trap continuously operates for several months,
which depends on the frequency of replacing the sticky paper and the quantity of reserved
sticky paper in the e-trap. Finally, to evaluate the statistics information of citrus fly pests
captured by the e-trap, the detection algorithms of citrus flies and the MAMPNet for the
classification of citrus flies are proposed in Sections 2.3 and 2.4, respectively.

2.1. Automatic Motor-Driven Citrus Fly E-Trap with Computer Vision

A brief overview of the e-trap and the corresponding monitoring system for citrus
flies is first given in this part. Then, the critical designs of the e-trap, e.g., the processing of
yellow sticky trap and the electromechanical designs, are introduced in detail.

2.1.1. Overview

In this work, a motor-driven e-trap with computer vision is designed, and the moni-
toring system is constructed by the e-traps, as shown in Figure 1a,b. In the system, e-traps
are the most significant devices. The e-trap mainly consists of a motor-driven trap and
an embedded device with a camera. A kind of yellow sticky paper with a plastic mask,
in which attractants are added, is designed and reserved in the trap, and the sticky paper is
exposed to trap insects. The opposite camera monitors the sticky paper and samples insect
images. Further, the computer vision algorithms are designed to detect and recognize
insects, as well as control the motor to automatically replace the paper to reduce the human
maintenance costs.

In the system runtime, an e-trap possibly operates in two different modes: the mon-
itoring mode and the paper replacement mode. The monitoring mode, from the e-trap
samples images, estimates the insect density on the exposed sticky paper, runs detection
and recognition algorithms, and transmits data to the remote server. In the paper replace-
ment mode, it mainly runs the autocontrol algorithm of the motor to replace the paper,
and it omits the newly captured insects in the short replacement process. However, this
has little effect on the pest statistics since the process takes only a minute [1,2]. Initially,
the e-trap operates in the monitoring mode, and the insect density is estimated successively.
When the density reaches a limit, namely, more insects are fully stuck on the paper, it
switches to the paper replacement mode. After finishing the replacement of paper, it
switches back to the monitoring mode. In short, the two modes alternately switch in the
system runtime.

In practical applications, the costs of the monitoring system include the device costs
and the operating costs. The device costs mainly indicate the expense of e-traps and
servers in the initial creation of the system. According to our evaluation, the costs of an
e-trap, including the costs of software and hardware, can be reduced below $150 after
engineering optimization. A server with GPU cards can take charge of thousands of e-traps.
The operating costs mainly contain the costs of communication and sticky paper, which are
low—about $10 per year for one e-trap when running the monitoring system. In general,
the monitoring system may be deployed in a large citrus orchard by managers or in a
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district by governmental departments. Therefore, the expense of a monitoring system is
acceptable in consideration of the systemic functionalities.

In summary, our designed system has the following functions. (1) The e-trap effectively
traps citrus flies and collects their high-quality images as well as the weather data in time,
e.g., updating the collected images and sensor data each hour. (2) The e-trap preprocesses
images to reduce the communication cost of transmitting the images, e.g., only detecting
the newly captured insects each hour, segmenting them from the total sticky paper image,
and transmitting them to the remote server. (3) The system recognizes the tapped insects
and statistically counts up their species and quantities. The recognition algorithm can be
flexibly deployed in the e-trap or the remote server. (4) Less human maintenance cost is
required. For example, the e-trap preserves the new and used paper in it and controls
the motor to replace the sticky paper automatically, including lures. (5) Pest and weather
data in a region can be easily collected by wireless communication, and they are further
analyzed to estimate the possibility of a large-scale pest disaster and the population trends
of pests.

2.1.2. Processing of Yellow Sticky Trap

The yellow sticky paper with attractants is the critical component, which attracts and
captures insects. In order to enable the paper to keep good attracting effects and reserve
sufficient sticky paper in the e-trap, we mainly carry out two measures: (1) Selecting
reasonable lures applicable to the yellow sticky paper; (2) Adding the lures into the yellow
paper by scientific means.

Selection of attractants. Attractants usually can be classified into two categories: food
lures and chemical synthesis lures [12]. In general, a food lure is effective for multiple
species of flies, and a synthesized one is specific for certain species. The latter is made
according to sex pheromones, aggregation pheromones, and attractants of plant origin.
Selection of attractants refers to the trapping efficacy, persistence, characters (liquid or solid)
of lures, and their usages on the yellow sticky paper. Aiming at the target pest species,
e.g., B. minax and B. dorsalis, according to the field comparison experiments in [12,13], we
selected the liquid of methyl eugenol and cuelure and added them into a special kind of
yellow paper, which is made of fibers and adsorbent materials. Moreover, we selected the
common solid food lures of protein baits for all the species of citrus fly pests, and they were
processed as fine particles that were evenly adsorbed to the sticky surface of the yellow
paper. The previous works [39,40] have proved that the incorporation of appropriate
attractants into the surface of sticky traps will efficiently capture flies.

Paper processing. As shown in Figure 2a, the liquid lures are firstly injected into the
adsorptive yellow paper, and its surface V is handled as a smooth and hermetic plane.
Then, the sticky material is spread onto the surface U, wherein the tiny holes are set apart
in the level of sticky material when spreading the sticky material on the paper so that the
liquid lures in the paper can better volatilize out from the holes after uncovering the plastic
mask. Furthermore, the fine particles of solid lures are evenly adsorbed onto the sticky
surface U, and Sides 1 and 2 are sealed by dissolving greases, such as the paraffin wax and
oil. Finally, a thin plastic mask is covered onto the sticky material (Surface U) to seal and
protect the liquid attractants in the paper and the solid attractants on the sticky materials.
By rolling the paper on an axle, a great deal of paper can be reserved in a confined space,
e.g., in the shell shown in Figure 2c, and the new paper can easily be extracted.

Significantly, the paper needs to be replaced when the attractants have no efficacy
after some days. However, there may be no or few insects stuck on the paper. In this case,
it is challenging to adopt an image analysis to distinguish the used paper without insects
and the new paper. To better monitor the boundary between new and used paper in the
replacing process, some blanking stamps are printed on the Surface U in the same interval
as shown in Figure 2b. Moreover, the interval length is set as the length of the exposed
paper’s sticky surface of the e-trap in Figure 2c. Namely, after finishing the replacement
process, the exposed new paper’s sticky surface should be purely yellow, not containing
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blanking stamps. This makes it easier to utilize image analysis to determine whether the
paper is correctly replaced or not, which will prevent the used paper from being partially
replaced when no or few insects are trapped.

Figure 2. (a) Processing of two-layer sticky paper with attractants. (b) A demonstration of the unrolled paper with blanking
stamps. (c) Appearance of trap. (d) A sectional view of a motor-driven trap.

In summary, according to our processing method, in virtue of the excellent tightness,
the attractants in the yellow paper and on the sticky material are well preserved when the
paper is rolled on an axle, and the plastic mask is not uncovered. When uncovering the
mask, the solid lures are disclosed in the air, and the liquid lures slowly volatilize into the
air through the tiny holes on the surface U, which are not covered by the sticky materials.
Furthermore, other attractants can be directly mixed into the sticky material to further
improve the trapping efficacy.

2.1.3. Electromechanical Designs of E-Trap

The electromechanical designs involve schemes of mechanical structures, hardware,
electronic devices, and the appearance of the e-trap. According to the structure of the
e-trap, the design schemes can be grouped into two main parts: a motor-driven trap
for reserving and replacing the yellow paper and an embedded device for collecting,
processing, and transmitting data.

Motor-driven trap equipment. The appearance and sectional view of the trap are
demonstrated in Figure 2c,d. Firstly, from the viewpoint of appearance, the trap’s inner
components are protected by the outer framework (shell), and only the yellow sticky paper
is exposed and visible, whose plastic mask is uncovered. The exposed sticky paper is used
to trap insects. Its Panel I is detachable so that the rolled paper can be installed into the
trap. Its other parts are integrated. All inner components are fixed in Panel II. The slicker is
used to clear the insects with large sizes when replacing the paper. The motor’s signal and
power lines are arranged in the pipy installation frames to connect to the embedded device
so that the process of replacing paper can be controlled by switching on or off the motor.

From the sectional view, a scroll linkage mechanism is designed to reserve and replace
the paper. The Scroll S rolled by the yellow sticky paper is used to reserve the unused paper,
as shown in Figure 2a. Scroll M is used to withdraw and store the used paper containing the
captured insects. The rollers numbered 7 and 8 are used to separate the yellow paper and
plastic mask. Two pairs of rollers, i.e., No.3 and No.4, No.5 and No.10, are set to extrude
and flatten the stuck insects on the sticky paper so that the sticky paper tightly touches
with the plastic mask, and the flattened insects are contained between them. The other
rollers help convey the sticky paper and plastic mask. A speed-reducing gear set is used to
link the scroll M with a motor for driving the linkage mechanism composed of two scrolls.
When the motor is switched on, the two scrolls will turn synchronously. The new paper is
pulled out from the Scroll S, and the used paper that contains the flattened insects is taken
back and rolled on Scroll M.
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Significantly, in order to smoothly retrieve the used paper containing the stuck insects,
it is important that the extruding and flattening roller pairs have flexible gaps, which may
be implemented by using two elastic rubber rollers. In our design scheme, the suitable gap
is set apart between the No.5 and No.10 rollers. The No.10 roller does not touch the sticky
paper, and it is used to extrude possible large-size insects preliminarily. The No.3 and No.4
rollers, which have strong extruding power, are used to flatten the stuck insects and merge
the plastic mask and sticky paper. To obtain the strong extruding power, the two pairs
of rollers can be directly driven by the motor by using chains. In conclusion, the design
scheme is feasible because the stuck insects, e.g., flies and butterflies, can be easily flattened,
and the sticky paper will not be jammed when the paper advances forward.

Embedded device. According to the requirements of the e-trap, the embedded device
should include the functions: (1) data collection of the images and weather statuses;
(2) preprocessing the images, operating the autocontrol algorithms, even the detection
and recognition tasks; (3) wireless communication. Considering a rapid development and
trade-off between hardware performances and costs, an existing development toolkit and
other integrated modules were directly selected to assemble the device.

For a powerful computing capability and a future extension, we directly selected the
high performance–cost ratio NVIDIA Jetson Nano Developer Kit (NVIDIA, Santa Clara,
CA, USA) with a 3280×2464 resolution Raspberry Pi Camera V2 (Raspberry Pi Foundation,
Cambridge, England, UK) as the main body. It has suitable hardware configurations
and rich interfaces, e.g., the 4-core ARM A57, 128-core Maxwell GPU, and 4G memory.
A 4G wireless communication module SIM7600CE-L (SIMCom, Shanghai, SH, China) is
connected to the Nano through a MINI-PCIe interface. Two integrated temperature and
humidity sensors are also connected to the Nano. The motor and Nano are connected using
a controllable switch chip. Both motor and Nano are supplied by a 24 V DC power. It is
noted that the hardware designs may be further improved for the lower cost according to
the future practical citrus orchard tests.

2.2. Image Analysis Based Autocontrol of E-Trap

The autocontrol of the e-trap indicates it automatically switches between the monitor-
ing mode and the paper placement mode and controls the motor to replace the sticky paper
in the second mode. The key issues are to solve when to switch to the paper replacement
mode and how to control the motor in this mode. According to the aforementioned two
operating modes of the e-trap in Section 2.1.1, it needs to switch to the paper replacement
mode in the following two cases: (1) too many insects are stuck on the paper, which can
be estimated by image analysis; (2) the lures in the sticky paper of the e-trap become less
valid, which can be determined by timing. Correspondingly, the paper replacement mode
can be triggered by an image analysis result or a timer signal.

In the first case, by analyzing the detected insects on the image of yellow sticky paper
in the monitoring mode, we estimate the insect density on the yellow sticky paper to
determine whether the e-trap should be switched to the paper replacement mode or not.
Assuming that Pt is the total image pixel number of the monitored area (the exposed yellow
sticky paper) on the trap, Pi is the pixel number of an insect on the yellow sticky paper
image, which can be estimated by the size of the candidate region in the detection module
shown in Figure 3, the insect density r on the e-trap can be computed as the following,

r =

n
∑

i=1
Pi

Pt
,

(1)

where n is the total number of captured insects. In the second case, the system time t can
be used to monitor the expiration date of the lures. In summary, if t0, τt, and τr respectively
indicate the last time of finishing yellow paper replacement, the valid session of lures, and
the threshold about the insect density, the conditions (r > τr OR t− t0 > τt) can be used to
start the mode of replacing the paper.



Agriculture 2021, 11, 460 8 of 27

When the above conditions are met and the e-trap switches to the paper replacement
mode, all other tasks, e.g., detection and recognition, are temporarily suspended, and the
control algorithm of the motor is started to roll the two scrolls S and M for replacing the
sticky paper in Figure 2d. Since their radii and rolling speeds are time-varying, it is difficult
to adopt the rolling time to control the paper’s moving distance accurately. Considering
that the used paper stuck by insects and the new, unused paper without insects are visually
different, it is feasible to utilize the camera to monitor the exposed sticky paper of the
e-trap to control the motor. Namely, by sampling the exposed sticky paper’s image in
Figure 2c and analyzing whether it is completely the new paper or not, if not, the motor
is switched on to continue rolling and replacing; otherwise, switched off to finish the
replacement. Specifically, when adding the blanking stamps in Figure 2b, it is easier to
determine whether the replacement is finished or not visually. Through these inspections,
we proposed a simple control Algorithm 1 based on image analysis.

Algorithm 1 Autocontrol of trap.

Require: τr, τt, τd, t0, Ir;

Ensure: I ≈ Ir in the LBP feature space;

1: Compute the insect density r using Equation (1) and get the system time t when

finishing the detection of insects for each new sampling image of the e-trap in the

monitoring mode;

2: if r > τr OR t− t0 > τt then

3: Switch to the paper replacement mode;

4: repeat

5: Sample the current image I of the yellow sticky paper on the e-trap;

6: Compute the control signal s according to Equation (2);

7: until d(LBP(I), LBP(Ir)) ≤ τd

8: Update t0 as the current system time for timekeeping of the valid session of attrac-

tants;

9: Switch back to the monitoring mode;

10: end if

In this algorithm, the input signal is the current image I of the yellow paper, and the
output is the switch signal s of the motor. The signal s can be estimated by comparing the
image I with a reference background image Ir, which can be obtained by sampling the
new paper in advance. Assuming that LBP(·) indicates computing a feature vector of an
image with the Local Binary Pattern (LBP) descriptor [41] and d(·, ·) is a Euclidean distance
between two vectors, the switch signal s can be computed as the following,

s =

{
1 d(LBP(I), LBP(Ir)) > τd,
0 d(LBP(I), LBP(Ir)) ≤ τd

(2)

where τd is a distance threshold, which can be determined by some experimental trials.
The LBP descriptor is adopted to reduce the effects of illumination variations in evaluating
the difference between I and Ir, which are possibly sampled in the different conditions.
Moreover, before attracting the LBP descriptor of an image, smooth filtering operations [42]
on the image are conducted to reduce the local noises caused by the dust on the sticky paper.
In summary, the efficient and straightforward LBP completely meets the non-real-time
autocontrol requirements of the e-trap. Once the replacement is started, the switch signal s
is kept on until the exposed sticky surface is similar to the pure yellow background, namely,
the exposed paper is completely new when d(LBP(I), LBP(Ir)) ≤ τd.
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Especially in practice, it is possible that a new insect is stuck on the moving paper or
an insect is flying between the sticky paper and camera when replacing the paper, as shown
in Figure 1a. In the latter case, the flying insect will interrupt the view of the camera, and
the sampled images will fail to reflect the real situations of sticky paper. However, the two
special cases will not affect the estimation of pest propagation trends and the replacement
of paper. Firstly, since the paper is replaced once a few weeks and the insects rarely fly
onto the moving paper, the insects stuck insects when replacing the paper will be few.
Even if they are not counted, the total statistics of pests will be rarely affected. Secondly,
the motor’s stopping condition is that the sampled image I is similar to the reference
image Ir with the pure yellow background. When an insect is flying before the camera,
the sampled I will not be similar to the Ir. Only at the time of stopping the motor, this case
may mean that the motor will not stop. However, after the insect flies away from between
the sticky paper and the camera, the motor will stop correctly.

2.3. Citrus Fly Detection Based on Differences of Two Successive Samplings

Detecting the target pests stuck on the e-trap is the basis of pest statistics in the
monitoring mode. Differing from the general object detection in a single image [43], this
task is to find the new insects on the current image I(i) compared with the last sampled
image I(i−1) an hour before. Therefore, the difference between the two images is essential
for detecting the newly captured insects in the last hour. Accordingly, we propose a simple
and efficient method shown in the left part of Figure 3. It mainly consists of two steps:
sampling and detecting procedures.

Sampling procedure. For monitoring and managing pests, it is enough to sample an
image to update the pest data each hour. For example, I(i) and I(i−1) in Figure 3, respectively,
indicate two successive samplings in the interval of one hour, i.e., the current sampled
image and the image an hour before. In order to accurately detect the newly captured
insects between two samplings, the quality of single sampling is essential. To ensure
the sampling quality, multiple measures are conducted. Firstly, the camera is set in the
photographing mode, and the subsidiary light source of the camera is switched on to
sample a high-solution still image. Secondly, to avoid sampling the occluded image
caused by the flying insect between the sticky paper and camera, in practice, for one single
sampling, three still images are sampled at an interval of 2 seconds, and then one of them
is selected as the final sampled image by comparing them. This is because they are nearly
identical only when no moving objects exist between the sticky paper and camera in the
sampling process. Finally, by setting a timer, it is possible to enable the e-trap to sample
one image of the e-trap each hour only in the daytime because citrus flies are rarely active
at night.

Detection procedure. The procedure includes six steps totally, as shown in Figure 3.
Firstly, the difference estimation and binarization [44] in steps (1) and (2) can generate
and highlight the regions caused by the newly captured insects. This is less affected by
illumination variations because I(i) and I(i−1) are sampled in one hour under the help of
the subsidiary light source of the camera. Secondly, the morphological opening and closing
operations [45] in step (3) are helpful for deleting the small noise regions, separating the
slightly-overlapped insects, and filling the holes in some regions. This will generate better
candidate areas and further estimate their contours, areas, and centers to localize objects
in step (4). Finally, due to the fixed distance between the trap and camera, the size of
each target kind of citrus fly pests in the images remains nearly invariable. Accordingly,
in steps (5) and (6), according to the sizes of candidate regions, some non-targeting insects,
e.g., a small mosquito and large butterfly, can be deleted, and the remaining objects can be
segmented using a fixed size that matches the size of target species of pests.
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Figure 3. An overview of detecting and recognizing citrus flies. (a) Detection and segmentation. (1) The difference between
two successive sampled images is converted to a gray image. (2) The Otsu algorithm [44] is performed to obtain a binary
image. (3) The morphological transformations are deployed on the white regions of the binary image to generate the
candidate areas. (4) The contours, centers, and areas of candidate regions are estimated, and the possible objects in I(i) are
localized. (5) Some small and large objects are further filtered out according to the objects’ areas. (6) Finally, the remained
objects are segmented using a fixed-size bounding box, and the segmented images are resized. (b) Classification and
statistics. The segmented and resized insect images from the detection phase are fed to the trained MAMPNet (Multi-
Attention and Multi-Part convolutional neural Network), which learn the object-level and attention-aware part features of
citrus flies on the multiple constructed datasets. Each detected insect is classified as one of 15 possible species of insects.
Finally, the statistical results of three target species of citrus fly pests, i.e., B. minax, B. dorsalis and B. scutellata, are counted
up. Especially, the FC layer indicates the Full Connection layer and the CNN means the Convolutional Neural Network.

In a word, when comparing with the filter-based algorithm [46] and the recent deep
CNNs based methods [15–17,47], our method is far faster than them because only some
image processing operations are conducted on the whole image. Despite the simpleness
of our method, it works effectively in this particular case of the yellow paper, which is
validated by our extensive experiments. The main reasons are that the image background
of the yellow paper with insects is pure, and the illuminate variation between two suc-
cessive samplings is slight. Furthermore, the invariable position of a previously-captured
insect in the e-trap image is the key to our method, which ensures that the previously-
captured insects are removed in the subtraction operation of (I(i) − I(i−1)) in step (1) of the
detection procedure.
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2.4. MAMPNet for Recognition of Citrus Flies
2.4.1. Structures of MAMPNet

The classification of citrus fly pests is an FGVC task [19,20] since some different species
of citrus flies belong to the same family and are visually similar. In this task, local part
features, e.g., the wings and thoraces, play an important role in distinguishing different
species of citrus flies. To explore such local features, inspired by the advances of attention
mechanisms [32–38], we proposed the MAMPNet, as shown in Figure 4. In the network, a
multi-attention module is implanted between Blocks c and d of the backbone ResNet50 [48].
It derives multiple 3D attention matrices for feature extractions of local parts and aggregates
them to form an object-level attention matrix to improve global feature learning. In order
to enable the module to capture the meaningful semantic parts with better discriminations,
two loss functions, i.e., the loss LCH estimating channel selection of parts and the loss LSP
constraining parts’ spacial distributions on the feature maps, are introduced, and they are
combined with the classification loss LCLS to drive the feature learning.

Figure 4. Structures of MAMPNet (Multi-Attention and Multi-Part convolutional neural Network). (a) Network framework.
A multi-attention module is implanted between block c and d of backbone ResNet50. The multiple attention matrices
M1,··· ,p for parts and one object-level matrix M are learned, and they are combined with the input feature maps U to
generate part features using RoI operations and attention-aware object-level global features in different branches. Finally,
the local part features and global object features are concatenated and reduced to 1024 dimensions in the FC layer for the
followed classification. (b) Attention module and part branch. (1) The channel attention Ci of the i-th part is learned to
select such part-related channels. (2) The spacial attention Si is further learned to localize and focus the i-th part. (3) The
RoI operation [49] is used to discard the unrelated features and extract uniform local features of the i-th part. (4) The part
branch, constructed by the stacked convolutional layers and average pooling layer, is used to explore the discrimination of
local features of the i-th part. Its structure is similar to the basic residual unit in the ResNet50 implemented in Pytorch [50],
where Convs indicates the stacked convolutional layers using the sequential 1× 1, 3× 3, and 1× 1 filters. Here, the GAP
indicates Global Average Pooling, the FC means Full Connection, and the RoI means Region of Interest.

From Figure 4, we find that the 3D attention matrix Mi for a meaningful semantic
part is a key part of the network. In order to excavate such a part attention matrix, a
scheme of two steps, i.e., from channels and spatial positions, is proposed. Namely, we
individually adopt channel and spacial attention mechanisms to discover “a meaningful
semantic part is composed of which specific feature channels” and “where the part is”
according to [34,35,38].

Channel attention. Inspired by [34,38], we adopt the squeezing and gating mechanism
in the SENet [51] to model the channel attention. Formally, given an input feature map
U ∈ Rc×h×w, a channel-wise global average pooling is first performed on U to obtain a
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vector V ∈ Rc. Then, in order to select the specific channels for a part, a gating mechanism
is applied on V to form the part’s channel attention C ∈ Rc as follows

C = σ(W1δ(W0V)) = [m1, · · · , mc] ∈ Rc, (3)

where σ and δ indicate the Sigmoid and ReLU functions, W0 ∈ Rc/r×c and W1 ∈ Rc×c/r

are the learnable parameters. Here r controls the reduction rate. With the channel attention
C, the channel and part-specific features Ũ can be obtained from U by a channel-wise
weighting, i.e., Ũ = [m1u1, · · · , mcuc] ∈ Rc×h×w, where uk ∈ Rh×w, k = 1, · · · , c is the k-th
channel feature map of U.

Spacial attention. To emphasize the part spatially, the spacial attention is further
developed on the channel re-weighted Ũ according to [34,38]. Firstly, we apply a global
average pooling on Ũ across all channels to obtain the average spacial response map
S̃ ∈ Rh×w. Ideally, the part-specific shapes or patterns will appear on S̃ and the responses
of other parts will be weak due to the gating role of channel attention. In order to exploit
such part-specific information and highlight the responses spatially, two dilated 3× 3
convolutions are performed on S̃ to compute the spacial attention S and the part maximal
response position (x̂, ŷ) can be further obtained as follows:

S = σ( f 3×3( f 3×3(S̃))), (4)

(x̂, ŷ) = argmax
(x,y)

(S). (5)

Here, σ and f 3×3 refer to the Sigmoid function and 3 × 3 convolution operation.
The (x, y) indicates a coordinate position of the spacial attention S, where x = 1, · · · , w, y =
1, · · · , h.

Attention-aware part and object features. Assuming that p parts are available, their
channel attention, spacial attention, and spacial maximal response position, i.e., Ci, Si, (x̂i, ŷi),
i = 1, · · · , p, can be obtained according to the above description. Further, the 3D part
attention matrix Mi is generated and the attention-weighted features Up are obtained
as follows

Mi = Ci ⊗ Si, (6)

Ui = U⊗Mi. (7)

Here, the symbol ⊗ refers to an element-wise multiplication. Specifically, the matrices
Ci and Si are resized to Rc×h×w by broadcast or copy operations [50] before the multiplica-
tion. Finally, an RoI pooling [49] around (x̂i, ŷi) is then performed on Ui to obtain the local
dimension-reduced part features Fi, i = 1, · · · , p from Ui, which are formulated as follow:

Fi = RoI(Ui, (x̂i, ŷi), e, o), (8)

where Mi, Ui ∈ Rc×e×e, Fi ∈ Rc×o×o. Here, the parameter e specifies the entry size of RoI
and the parameter o sets the RoI output size, i.e., a spacial square area around (x̂i, ŷi),
which can be determined according to the ratio of part and object sizes, e.g., e = 19 and
o = 7, as shown in Figure 4.

As for the object-level feature, the whole attention matrix M is first generated by
averaging all part attentions. Then, a residual idea is applied on U to obtain the object-level
features F ∈ Rc×h×w as

F = U + U⊗ (
1
p

p

∑
i=1

Mi). (9)
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The residual operation will enable the module parameter to be easily optimized. It is
noted that all the part and object-level features Fi and F are the outputs of the proposed
multi-attention module. They will be individually fed to the following CNN blocks of
multiple part branches for further exploring their discrimination, as illuminated in Figure 4.
The multiple outputs of part branches and object branches are concatenated and dimension-
reduced in the FC layer for the final classification.

2.4.2. Learning and Reference

The goal of the proposed multi-attention module is to utilize attention mechanisms
to discover different semantic parts and learn their discriminative features not only from
local parts but also from global objects. To this end, we introduce several loss functions to
enable learned attention matrices to achieve the objectives in feature learning according to
the ideas in the literature [34,35,37,38].

Ideally, for an input image’s p different parts, the spacial attention matrices Si ∈
Rh×w, i = 1, · · · , p generated in Equation (4) should meet so that a single Si has a compact
distribution and all matrices Si for i = 1, · · · , p have diverse distributions due to different
local part positions. To achieve these spacial constraints, according to [34], we introduce a
loss function LSP as follows:

LSP =
p

∑
i=1

(Dis(Si) + λ0Div(Si)), (10)

Dis(Si) = ∑
(x,y)

Si(x, y)[‖x− x̂i‖2+‖y− ŷi‖2], (11)

Div(Si) = ∑
(x,y)

Si(x, y)[max
j 6=i

Sj(x, y)− ε]. (12)

Here, the symbols Si(x, y) and Sj(x, y), respectively, indicate the response values at
(x, y) coordinate positions of Si and Sj, i, j = 1, · · · , p. The Dis(·) enables the distribution
of Si spatially compacted around the part’s maximal response position (x̂i, ŷi). The Div(·)
encourages that only one of the spacial attention matrices S1, · · · , Sp for all parts has a
maximal response on a spacial position (x, y). Namely, a local region around (x, y) should
only belong to one part. The margin ε is to improve the loss function’s robustness to noises.
The parameter λ0 balances the roles of Div(·) and Dis(·).

Moreover, some semantic meaningful parts, e.g., the wing and abdomen, are across all
categories of flies, which are important in discriminating different categories. To capture
such parts, inspired by [35], we introduce a loss function on a batch of samples in the
training network so that the channel attention C of a part selects similar channels and
different attentions Ci, i = 1, · · · , p of p parts chooses different sets of channels for all batch
samples, regardless of their object-level class labels. This objective can be implemented by
a clustering idea. Assuming that there are n samples in a batch, the vector C(i,j) denotes
the channel attention of the i-th part for the j-th sample, where C(i,j) ∈ Rc, i = 1, · · · , p, j =
1, · · · , n. Correspondingly, for the i-th part, the channel attention center of all samples

C̄i =
1
n

n
∑

j=1
C(i,j) can be computed. To measure similarity, we update C(i,j) = C(i,j)/‖C(i,j)‖,

C̄i = C̄i/‖C̄i‖ with a `2 normalization. Based on them, we compute the loss,

LCH = − 1
np

p

∑
i=1

n

∑
j=1

CT
(i,j)C̄i +

2
p(p− 1) ∑

i 6=k
C̄T

i C̄k, (13)

where T indicates the transpose operator, and i and k are the indices of parts. The operations
CT
(i,j)C̄i, and C̄T

i C̄k are equivalent to cosine similarities. In nature, the loss expresses the
clustering of all C(i,j), which drives the i-th part’s vectors C(i,j), j = 1, · · · , n of all samples
closer and separates their centers C̄i, i = 1, · · · , p far. Namely, the first term encourages
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that part of the attention focuses on similar channels, and the second term ensures that
different parts of attention select different sets of channels.

Finally, considering the image classification loss LCLS corresponding to the output of
MAMPNet, our final loss function for feature learning can be expressed as

L = LCLS + λ1LSP + λ2LCH , (14)

where LCLS is the softmax cross entropy loss [50] for the final classification, whose input is
the joint features (FC layer) combining the part and object branches in Figure 4. In feature
learning, the loss term LCLS drives the part and object branches to capture the discriminative
local and global features and balances their roles in the FC layer. On the other hand, the loss
terms LSP and LCH help the image classification loss LCLS to locate the discriminative and
semantic meaningful parts and improve their roles in distinguishing different species. Here,
the hyperparameters λ1 and λ2 balance the roles of the three loss terms. When training the
classifiers, i.e., only updating the FC layer, LSP and LCH are omitted by setting λ1 = λ2 = 0.

Table 1. Datasets for classifier training and feature learning. The second column describes the number of samples (t) and
the number of species (s). The species in D1, D2, and D3 are not overlapped.

Dataset Amount Characteristics and Purposes

D1-Citrus flies t = 5952, s = 15
The dataset for validating the identification of citrus fly pests. It contains the
three species of citrus fly pests and the other 12 species of insects possibly
captured by the yellow paper (See Appendix A.1).

D2-Fruit flies t = 11, 492, s = 25
Flies similar to the citrus flies, namely with the similar parts of wings, thoraxes
and abdomens. They are additionally used to help to learn the attention
module and improve the discrimination of part features.

D3-Winged insects t = 25, 873, s = 60
Winged insects (Diptera and Hymenoptera) with the similar ideotype and rich
textures. They are collected to learn the common features of textures,
micro-structures, and contours for citrus flies.

2.4.3. Training MAMPNet

In our system, the recognition task is to accurately classify three kinds of citrus fly
pests (B. minax, B. dorsalis, B. scutellata) and 12 other species of insects that are possibly
captured by the e-trap. For validating the task, the dataset D1− Citrus flies in Table 1 is
built to report classification performances. However, the small-scale D1 is not enough to
learn the multiple attention matrices and multiple branches in the MAMPNet. To address
this, we utilize the existing datasets, e.g., iNaturalist [52], ImageNet [53], and IP102 [54],
to construct two auxiliary datasets (D2−Fruit flies and D3−Winged insects) in Table 1 for
training the MAMPNet. In a word, the procedure of a training network can be divided into
the following two phases: feature learning and training classifiers.

In the feature learning, we firstly combine the train subsets split from D1, D2, and
D3 to fine-train the pre-trained ResNet50 in [55] and take its Blocks a–c as the backbone
of our MAMPNet so that its backbone focuses on the classification of winged insects.
Then, in order to enable the part attention matrices Mi, i = 1, · · · , p to better capture the
significant parts of the fly categories, e.g., the wing, thorax, and abdomen, the training
subsets from D1 and D2 are together used to train the multiple attention blocks and part
branches of the MAMPNet while freezing the backbone, as shown in Figures 3 and 4. In the
training classifiers for evaluating recognition performances on the dataset D1, the FC and
Softmax layers of MAMPNet are modified to match the classification task for 15 species of
insects in the D1 and their parameters are learned.
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3. Experimental Results and Discussion
3.1. Experiment Settings
3.1.1. Dataset Settings

Data sources. To validate the algorithms of autocontrol, pest detection, and pest
recognition designed for the e-trap, image samples of citrus flies are necessary. We collected
the insect images to construct experiment datasets in the following ways. (1) Extracting
from the existing datasets containing insect images according to their category information,
e.g., iNaturalist [52], ImageNet [53], and IP102 [54]; (2) synthesizing the insect images on
the yellow sticky paper of the e-trap; (3) collecting the insect images from some professional
websites, e.g., https://www.inaturalist.org (accessed on 1 August 2020); (4) photographing
the laboratory insect specimens collected in the citrus orchards.

Simulation of yellow paper images. The critical algorithms in our system mainly
operate on the images or videos of yellow sticky paper on the e-trap. However, in practice,
it possibly requires several years to collect all possible species of adequate pest images
from the practical yellow sticky paper on the e-trap in the citrus orchard since it is affected
by many factors, e.g., the seasons, climates, and quantities of pests. Therefore, in order to
better represent the variations of insect images from the yellow sticky paper in practice,
we synthesize the yellow paper images containing possible insects by using a yellow
background image and different kinds of insects to simulate the realistic environments of
the yellow sticky paper on the e-trap.

In the synthesizing process, we first pick some source images with simple backgrounds
and adopt image matting operations to obtain basic insect images with transparent back-
grounds and suitable sizes. Then, we randomly add some basic insect images onto an image
I(i−1) to produce a new image I(i), where I(i−1) indicates an initial pure yellow image or one
sampled image in the monitoring process and the added insect images represent the newly
stuck insects between two samplings in an interval of an hour. In a word, starting from I(0)
indicating an image of new paper, an iterative process of the above basic operations will
simulate the practical image sampling process of yellow paper on the e-trap.

Further, based on the above basic synthesizing operation, we adopt the following
image operations to simulate the practical environmental factors in the system runtime of
the e-trap. (1) Two parameters distributed as uniform distributions individually control
the number and species of added insect images to simulate the scale of pests and dynamic
pest data. (2) We resize the basic insect images in a certain range, randomly rotate them,
and select positions before adding them onto I(i−1) to simulate different captured poses.
(3) Some parameters randomly adjust the exposure, brightness, and contrast of I(i−1) and
I(i) to simulate the practical illumination variations. Figure 5b,c shows our synthesized
images of the yellow paper in different cases. In summary, the above simulation method
considers the possible factors that affect the sampling of images or videos of the e-trap
in practice. Accordingly, the simulated images and videos of yellow paper can credibly
validate the insect detection and recognition algorithm and the autocontrol algorithms for
the e-trap.

Datasets for citrus fly recognition. According to the application scene of the e-trap’s
yellow paper, the recognition of citrus flies only needs to be validated on the simulated
citrus fly images with a yellow background. However, the recognition algorithm based on
MAMPNet requires enough samples for training the networks, and it is labor-intensive
to utilize image matting operations to synthesize the images of yellow paper with insects.
Moreover, the background of insect images plays fewer roles in feature learning and
image classification. Therefore, we adopt the synthesized yellow background images and
source images to construct the D1-Citrus flies in Table 1 for evaluating the recognition
performances, in which the ratio of two categories of images is about 10% and 90%, namely
about 600 synthesized images and 5352 source images. Its 15 species (B. minax, B. dorsalis,
B. scutellata, and others) are shown in Figure 5a.

https://www.inaturalist.org
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Figure 5. (a) The main insect species are possibly stuck on the e-trap and their categories infor-
mation is described in Appendix A.1. (b) The simulated yellow paper images for e-trap’s auto-
control and insect detection. (c) The synthesized and cropped insect images for validating the
recognition algorithm.

To avoid overfitting in training the MAMPNet, the two auxiliary datasets, i.e., D2-
“Fruit flies” andD3-“Winged insects”, are built for feature learning according to the biological
taxonomy by utilizing the image samples of some species of insects, which are available
in iNaturalist [52], ImageNet [53], and IP102 [54], etc. When selecting the image samples
to construct the datasets, the species of D2 and D3 are from the orders of Diptera and
Hymenoptera in Insecta. Namely, they are the winged insects with similar appearances or
textures. Therein, the species inD2 are mainly from the families Tephritidae and Drosophila,
which have similar parts compared with the citrus fly pests. In a word, they are helpful
for enabling the network to capture low-level features and high-level meaningful parts
in training.

3.1.2. Parameter Settings

In the insect detection and control of the e-trap, the size of the yellow paper image
is approximatively set to the maximum resolution of the camera, e.g., 3000× 2000, by
adjusting the distance between the yellow paper and camera to enable it to monitor just
the whole exposed paper of the e-trap, whose size matches the resolution of camera,
e.g., the length of 30 cm and the width of 20 cm. Correspondingly, due to the fixed
distance, the sizes of detected citrus flies in the images vary less, and the bounding boxes
in detection can be set to a fixed size, e.g., 200× 200. Further, all bounded and cropped
200× 200 insect images are resized into the size of 299× 299 for the following recognition.
When controlling the e-trap in Algorithm 1, the LBP descriptor adopts the parameter
settings in [41]. The parameters τr = 0.85, τt = 15 (day), and τd = 0.05 are set respectively.

In training the MAMPNet, each of D1, D2, and D3 are randomly split into the train,
validation, test subsets according to the ratio (7:1:2). Firstly, when combining D1–D3 to
fine-tune the backbone network, i.e., the ResNet50 pre-trained in [55], the training process
and parameter settings refer to [55]. Then, when further utilizing D1 and D2 to train the
MAMPNet constructed by the Blocks a–d of the fine-tuned backbone, its attention modules,
part branches, and FC layers are initialized randomly. The part number p = 2 and other
hyperparameters λ0 = 2, ε = 0.02, λ1 = 0.5 and λ2 = 1 are empirically set. The batch size
(32), momentum (0.9), learning rate (0.03), and exponential decay (0.9 per 2 epochs) are set,
and the Optimizer RMSprop is adopted. Finally, when training the classifiers on D1 for
reporting recognition performances, i.e., only updating the FC and Softmax layers, they
are modified to match the 15 species, and their parameters are initialized randomly.

3.2. Experiments for Autocontrol of E-Trap

The key to automatically replacing the yellow paper is to generate the right stopping
signal of the motor after starting the mode of replacing paper by monitoring the yellow
paper and comparing its images with a reference image of the new, unused yellow paper. In
practical applications, the generation of a stopping signal may be affected by the following
conditions. (1) Comparing with the reference image, the illumination conditions of sampled
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images in replacing the paper possibly vary since the replacing process can be started at
any time. (2) When fewer insects are stuck and the timer triggers the replacing process,
the partial old paper but without insects may be thought as the new paper visually. (3) An
insect is flying past the camera during the replacement process. In this subsection, we
design the simulation experiments to validate the proposed autocontrol algorithm and
give a detailed analysis of the above conditions.

Video simulation. We synthesize the videos to simulate replacing the yellow paper,
as shown in Figure 6a. Firstly, a basic yellow paper image with some insects, namely the
starting frame of a video, is generated and loaded into a matrix. Then, a shift-operation on
the matrix is conducted at a speed of p pixels per second and the shifted parts at the end are
replaced by its yellow background. By this method, we generate 200 videos to validate the
autocontrol algorithm. Specifically, as shown in Figure 6b,c, by controlling the illumination
conditions of the basic images and the number of insects on it, the practical conditions (1)
and (2) can be simulated in the videos. By composing a moving insect image into a video,
condition (3) can be simulated by controlling its sizes and moving route. Therefore, it is
reasonable to evaluate our control algorithm on the 200 simulated videos.

Figure 6. The image analysis for controlling the motor signal. (a) The starting, intervening, stopping frames of a simulated
video of the replacing process. The red rectangle is the visible monitored area of the e-trap. Its left and right indicate the
old and new papers, respectively, which are invisible and protected in the e-trap in practice. The right moving rectangle
simulates rolling the paper. (b) The reference image Ir and starting frames of three videos with different illuminations (Illu1,
Illu2, Illu3). (c) Special cases for fewer insects on the paper and occlusions caused by a flying insect before the camera.
(d) The analysis of the replacing processes for different videos. A curve describes the distance variations between Ir and
frames of a video. If a distance falls below the threshold τd, the stop signal of the motor is generated. Here, the LBP indicates
Local Binary Pattern.

Validation of autocontrol algorithm. In the evaluation, we use a pure yellow image as
a reference image Ir of the new paper, as the first from the left in Figure 6b. For each video,
the distances of all its frames to Ir are computed sequentially. When the distance decreases
to the threshold τd, the stopping signal of the motor is generated and the corresponding
frame is regarded as the stop position. If the yellow paper is properly renewed at the
position, namely, the stopping frame is the pure yellow image of new paper, this control is
right. Correspondingly, the ratio of the number of right-controlled videos and the number
of total videos is defined as the control accuracy. Specifically, when computing the distance
between a sampled frame and Ir, an image is firstly resized as the 300× 200 image. Then,
it is partitioned into the 3× 2 grids, and the histogram of each grid on the LBP image is
extracted. All of its histograms are concatenated and normalized with the `2 normalization
to generate the feature vector for computing the distance. For the gray-level features,
the extracting procedure is similar to the LBP features, except the histograms are extracted
from the gray image.

To evaluate our method and analyze the roles of LBP and blanking stamps in our
system, we compare the control accuracies in the following three cases: A. Evaluate the
distances between each frame and Ir to determine the stop position directly using the gray-
level features in the condition of yellow sticky paper without blanking stamps; B. Evaluate
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the distances by extracting the LBP features in the condition of no blanking stamps; C.
Evaluate the distances using the LBP descriptor on the images with the blanking stamps.
The evaluation results are shown in Table 2. Furthermore, a more detailed analysis of the
special cases, e.g., the illumination variations, few insects, and an insect flying before the
camera, is shown in Figure 6.

Table 2. The control accuracies of the motor on the simulated videos in the different settings. Here,
the LBP indicates Local Binary Pattern.

Case Accuracy Settings

A 93.5% Gray-level features, no blanking stamps;
B 98.0% LBP features, no blanking stamps;
C 100% LBP features, having blanking stamps;

Firstly, by comparing the cases A and B in Table 2, it is obvious that the LBP de-
scriptor is better than directly using the gray-level features for estimating the difference
between the reference image Ir and a frame of video to generate the motor’s control signal.
The main reason is that the LBP descriptor eliminates the negative influences of illumina-
tion variations. This can be explained by the analysis of several videos. By inspecting the
three videos (starting frames) with different illuminations and their distance variations in
Figure 6b,d, on the three videos, all the proper stop signals are generated when adopting
the LBP, but only one when using the gray level features. This is because the illuminations
in the three videos of the new paper are different from the illumination in the reference
image Ir and the evaluation of distances is less affected by the illumination variations when
adopting the LBP descriptor.

Secondly, from the contrast results of case C and B in Table 2, we can conclude that
the blanking stamps on the paper shown in Figure 2b are helpful to prevent an incorrect
early-stop of the motor in the case of fewer insects on the paper, which needs to be replaced
due to the out-of-date attractants. In this case, the partial monitoring area may be bare,
as shown by the first from left in Figure 6c. In replacing the paper, if there are no blanking
stamps, the distance will drop early below the threshold τd, as shown by the red dotted
line in Figure 6d. This will cause the incorrect partial replacement shown by the second
from left in Figure 6c. If with the stamps, the distance will drop below τd at the correct
position until the monitored area contains no blanking stamps (complete replacement),
as shown by the third from left in Figure 6c and the red line in Figure 6d.

Finally, as for the occlusion caused by a flying insect in the process of replacing the
paper, shown by the sampled frame in Figure 6c, it only causes a peak change of the distance
curve, but never affects the generation of the stopping signal at the end, except that the
occlusion occurs at the stop time, as shown by the pinkish-red line in Figure 6d. This is
mainly because the reference image Ir and the sampled image containing the occlusion are
fairly different, and the estimated distance between them will not generate the stop signal.
Especially, even if the incorrect control occurs just because of the occlusion at the stop time,
the moving paper will stop right between the following two blanking stamps. In practice,
the above occlusion very rarely occurs due to the short replacing time.

3.3. Experiments for Detection of Insects on Synthesized Yellow Paper Images

Data preparation. Our detection task is to find the newly captured insects between two
neighbor samplings (I(i−1), I(i)) in one hour. Therefore, our detection algorithm’s input is a
pair of images, and it detects the newly added insects on I(i) by comparing I(i) with I(i−1).
In the experiments, we prepare pairwise yellow paper images (I(i−1), I(i)) to simulate two
samplings in one hour. For each pair, we first generate I(i−1), and then randomly append
some insects onto I(i−1) to obtain I(i), using this means to simulate the new insects flying
onto the paper. In this process, some parameters as described in Section 3.1.1 are used to
control the number and species of added insects so that it better simulates the practical
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application. Totally, we generate 1200 such image pairs to evaluate the effectiveness of our
detection method, where each pair indicates one sampling for detection.

Detection accuracy measure. In this application, our detection task is similar to
selecting candidate areas in classical object detection. Namely, the new insects on I(i)
are located and bounded. Therefore, we evaluate our detection algorithm by inspecting
whether a newly stuck insect is right bounded rather than using IoU (Intersection over
Union) [43] because a detected object is already at the center of the bounding box and the
sizes of bounding boxes are invariable in our method. Assuming that there are m target
insects whose sizes are similar to the citrus flies and n non-target insects that are too small
or oversized, the t true and f false boxes are respectively bounded, the False Acceptation
Rate (FAR), False Reject Rate (FRR), and Positive Detection Rate (PDR) are, respectively,
defined as

FAR =
f
n

, (15)

FRR =
m− t

m
, (16)

PDR =
t
m

. (17)

In the detection, if multiple overlapped insects are detected as one insect, this is re-
garded as error detection. For example, several overlapped small insects, such as mosquitos,
are detected as one target object, and several overlapped target insects are detected as one
oversize non-target insect.

Table 3. Statistical analysis of the detection accuracies on the simulated 1200 samplings. For each sampling, multiple newly
stuck insects may be captured or nothing may be stuck on the e-trap. Here, the FAR, FRR, and PDR respectively indicate the
False Acceptation Rate, False Reject Rate, and Positive Detection Rate.

Statistical Results Detailed Descriptions

n = 1324 Stuck target insects, whose sizes are similar to citrus fly pests;
m = 2485 Stuck non-target insects that are small or oversize, e.g., the mosquitos and butterflies;
t = 1315 Correctly detected target insects;

f = 32 False target insects caused by non-target insects;
FAR = 0.0129 What ratio of stuck non-target insects are incorrectly accepted as target insects;
FRR = 0.0068 What ratio of stuck target insects are incorrectly rejected;
PDR = 0.9932 What ratio of stuck target insects are correctly detected;

Experimental results and analysis. Based on the above 1200 simulated samplings, we
statistically analyze the stuck insects and the detection results in Table 3. On the whole,
3809 insects are stuck on the e-trap in this simulated experiment, containing 1324 target
insects, and 2485 non-target insects, respectively. Among them, 1315 target insects are
detected correctly and a large number of non-target insects are efficiently discarded by
setting the appropriate parameters of τl = 250 and τu = 650. Due to the overlap and
occlusion, as shown in Figure 7c, 32 false target insects are obtained and 9 true target
insects are omitted. The evaluation results of FAR, FRR, and PDR show 99.32% of target
insects can be correctly detected while 1.29% of non-target insects are accepted as target
insects, and 0.68% of target insects are rejected as non-target insects.

In our detection algorithm, some too small or oversize candidate regions are thought
as non-target insects, and they are discarded according to the area A < τl or A > τu
in order to reduce transmitting the images of the detected insects to the remote server.
Therefore, the settings of τl and τu directly affect the FAR, FRR, and PDR. As shown in
Figure 7a, when increasing τl , the FAR goes down rapidly until about at τl = 250. This
shows that most of the small insects are discarded at this point. Then, after this point,
the FRR will increase fast, which means the target objects (fruit flies) will be rejected and
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the PDR will decrease. Similarly, from Figure 7b, the FRR will drastically go up and the
PDR will go down fast when decreasing τu after τu < 650. In conclusion, when setting
τl = 250 and τu = 650, 99.32% of PDR together with the low FAR and FRR can be achieved.

Figure 7. Analysis of the detection algorithm. (a) Effects of setting different τl without considering τu; (b) effects of setting
different τu without considering τl ; (c) error detections. The green-border image indicates a false acceptation. The blue
and red-border images are the incorrectly rejected cases. Here, the FAR, FRR, and PDR respectively indicate the False
Acceptation Rate, False Reject Rate, and Positive Detection Rate.

It is noted that the high FRR (discarding the target objects) will bring worse effects
to the final pest statistics than the high FAR (accepting the false objects) because the false
accepted objects will be further eliminated in the following classification and the high
FAR only results in some extra computations. Therefore, we can set the parameters τl
and τu to suppress the FRR and enhance the PDR until 100% with less consideration of
the FAR. For example, in the extreme case, all located objects in Figure 3 are bounded
and segmented as the input images in the classification phase. Specifically, we also show
some incorrectly detected images in Figure 7c. The main reason for error detections is the
overlapping between objects. However, in practice, the possibility of objects overlapping
is low because insects prefer to fly onto a blank yellow area, and the yellow paper will
be renewed when more insects are available. This means that the PDR may be further
enhanced in practical applications.

3.4. Experiments for Recognition of Citrus Flies

In order to analyze and validate our algorithm of citrus fly identification, we conduct
ablation studies on our algorithm to evaluate the roles of multiple attentions and multiple
parts. Namely, we adopt the different combinations of losses LCLS, LSP, LCH to learn
features so that the roles of LSP and LCH are analyzed. This can be implemented by setting
λ1 = 0 or λ2 = 0 in feature learning. Furthermore, we compare ours with several classical
networks, e.g., the MobileNet-V2 [56], VGG16 [57], DenseNet121 [58], ResNet50 [48],
and bilinear CNN models [59,60], which were estimated in fruit fly identification or pest
recognition previously. For all the methods, the training subsets of D1, D2, and D3 are
combined to conduct feature learning, and classification accuracies are estimated on the
test subset of D1. The average accuracy of five repetitions is reported as the final result. For
more details about dataset settings and training MAMPNet, refer to Sections 3.1.1 and 2.4.3.
All the methods have been implemented in the Pytorch platform [50], and their results are
reported in Table 4.
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Table 4. Comparison with the related methods on the D3-Citrus flies. The methods used in No.7–10 indicate our algorithms
learning features by the different combinations of three loss functions.

No. Method Accuracy Notes

1 MobileNet V2 [56] 0.892± 0.0029 Initialized by the pre-trained model from Pytorch;
2 VGG16 [57] 0.896± 0.0036 Similar to No. 1;
3 DenseNet121 [58] 0.928± 0.0027 Similar to No. 1;

4 ResNet50 [48] 0.931± 0.0032 Baseline method, it will be used the backbone network as the
following methods;

5 Bilinear ResNet50 [59] 0.940± 0.0034 Backbone-ResNet50, Bilinear network architecture
according to [59];

6 CBAM ResNet50 [38] 0.942± 0.0030 Backbone-ResNet50, Attention Blocks according to CBAM [38];

7 MAMPNet_(LCLS)
0.945± 0.0031 Only utilize the classification loss LCLS to drive network training

for feature learning;

8 MAMPNet_(LCLS+LSP)
0.952± 0.0025 Compared with No.7, the loss LSP on attention matrices is

combined with LCLS in feature learning;

9 MAMPNet_(LCLS+LCH) 0.950± 0.0028 Compared with No.7, the loss LCH of across-category part
constraints is combined with LCLS;

10 MAMPNet_(LCLS+LSP+LCH) 0.956± 0.0023 All loss functions together.

Firstly, comparing with the baseline ResNet50, our MAMPNet (No.10), the “Bilin-
ear ResNet50” [59], and the “CBAM ResNet50” [38], respectively, achieve the accuracy
gains of 2.5%, 0.9%, and 1.1%. Therefore, our MAMPNet obtains the highest accuracy
of 95.6%. On the one hand, these results show that the recognition accuracy of citrus
flies can be improved by exploiting local features and improving their discriminations.
For example, the bilinear operations in “Bilinear ResNet50” and the attention blocks in
“CBAM ResNet50”, respectively, develop the correlations between local features and find
the important local features. On the other hand, the contrast results show our MAMPNet
far outperforms the “Bilinear ResNet50” and “CBAM ResNet50”. This is mainly because
the structure and loss function of MAMPNet enable it to better locate and combine multiple
local regions (parts), such as the wings and thoraces, and then explore their discriminations
to improve the recognition rate of citrus flies.

To further analyze the attention modules and the corresponding loss terms in the
loss function, the ablation studies on the loss function are demonstrated by the results
of No.7–10 settings in Table 4. Comparing with the setting of MAMPNet_(LCLS)

, when
adding the loss terms of LSP and LCH in feature learning, the MAMPNet_(LCLS+LSP)

and
MAMPNet_(LCLS+LCH), respectively, obtain the accuracy gains of 0.7% and 0.5%. Their
combination for the No.10 setting improves the accuracy of 1.1% compared with the No.7
setting. These contrast results confirm that LSP and LCH are beneficial to the attention
modules. This is mainly because LSP and LCH , respectively, append the spacial position
relation constraints and the across-category channel constraints on the attention modules,
which enable the attention matrices Mi, i = 1, · · · , p to better locate the common meaningful
parts of citrus flies and explore their discriminations. The visualization of attention matrices
in Figure 8a also confirms this point. Moreover, the ideas of developing spacial attentions
and channel attentions have been proved effective in the other FGVC tasks [34–37]. To sum
up, the highest accuracy of 95.6% for MAMPNet_(LCLS+LSP+LCH) and the ablation studies of
loss terms LSP and LCH , together they show LSP and LCH are indeed helpful for exploiting
discriminative local features of key parts.

Especially, to offer guidance on a selection of the backbone for citrus fly identifi-
cation, we also evaluated several classical networks, i.e., MobileNet [56], VGG16 [57],
DenseNet121 [58], and ResNet50 [48]. The contrast results demonstrate that a more ad-
vanced or deeper network architecture usually obtains a higher accuracy for the task of
citrus fly identification to some extent. This shows our accuracy may be further improved
when deeper backbone networks are adopted without considering computation costs,
e.g., the ResNet101 [48] and DenseNet161 [58].
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Figure 8. Analysis of the recognition of some samples. (a) Visualization of the attention modules. The blue and magenta
areas visualize the M1 and M2 modules, respectively. (b) Comparison of classification scores of sample pairs with different
backgrounds. (c) Incorrectly recognized samples in the cases of occlusion, special poses, and low image qualities.

Considering that it is more important to recognize three species of target pests
(B. minax, B. dorsalis, and B. scutellata) on the e-trap than the others for monitoring pest
disasters, we further statistically analyze their accuracies in the cases of synthesized yellow-
background images and non-yellow-background source images in Table 5. Several con-
clusions can be obtained from these results. (1) The accuracy of 97.9% on the synthesized
images is 3.3% higher than the source images on average. This is mainly because the
synthesized images contain fewer low-quantity images and part occlusions than the source
images, which accords with the characteristic of e-trap sampling images. (2) The obvious
accuracy difference is caused by the sample images’ contents rather than their backgrounds.
The backgrounds of insect images affect the feature extraction and classification of citrus
flies less, which can be confirmed by the classification scores of some images with the
yellow background of sticky paper and the other backgrounds in Figure 8b. In a word,
the accuracy evaluation of the synthesized and non-synthesized images may simulate the
pest recognition on the yellow sticky paper of the e-trap. Moreover, the accuracy of 95.0%
for target pests can be improved in practice because of the high-quality sampling images
from the e-trap.

Table 5. Statistical analysis of the recognition accuracies for three species of target citrus fly pests on
the synthesized yellow paper images and source (non-synthesized) images.

Category Synthesized Images Source Images All Images

B. minax 0.976± 0.0019 0.942± 0.0024 0.946± 0.0022
B. dorsalis 0.985± 0.0016 0.948± 0.0021 0.952± 0.0019

B. scutellata 0.972± 0.0020 0.939± 0.0030 0.943± 0.0023
Average 0.979± 0.0018 0.946± 0.0026 0.950± 0.0020

Finally, to analyze the reasons for incorrectly recognizing a minority of difficult
samples, we deeply investigate the incorrectly recognized samples shown in Figure 8c.
We find this is mainly caused by two reasons as follows. (1) The key parts of a citrus
fly are unclear or invisible due to the poor image qualities or photographing views of
insects. (2) The recognition accuracy of a species of citrus fly pests is possibly affected by
similar species because the subtle differences between them only exist in key parts, e.g.,
the wings and thoraces. A citrus fly may be easily recognized as another similar species
when lacking information about the key parts. In fact, this characteristic also exists in all
the FGVC tasks [19–22]. For instance, in Table 5, each species of target pests represents
slightly different accuracies, and the average accuracy of 95.0% is slightly lower than the
accuracy of 95.6% for all 15 species in Table 4. The main reason is that a sample of three
target species is more easily recognized as a similar non-target species, e.g., B. cucurbitae
and B. tau, especially when the key parts of the sample are unclear or invisible. In contrast,
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for some non-target species, e.g., Apis mellifera and Lucilia cuprina, the higher recognition
accuracies can be obtained because they are visually different from the other species in all
15 species.

In summary, the recognition accuracy of 95.6% for citrus fly pests completely meets
the requirement of monitoring and early warning of the large-scale disaster of citrus fly
pests. Firstly, the early warning of pest disaster mainly relies on the propagation trends and
quantity distributions at many installation locations of e-traps. The incorrect recognition
rate of less than 5% will not affect the evaluation of total pest trends, e.g., the increasing
speeds of pests at different installation positions and the spreading speeds from some
installation positions to others. Secondly, in practice, the recognition accuracy may be
improved since the distance between the camera and e-trap is fixed, and the quantities
of sampled insect images are higher than those in this experiment. Moreover, after the
practical installations of e-traps, more pest images will be collected to fine-train the network
model and further improve the accuracy.

4. Discussion
4.1. Discussion on Design Schemes of E-Trap

Compared with the e-traps in the previous monitoring systems [1,4–9], our designed
e-trap prototype has the following advantages. (1) It can operate for a long time (several
months) without manual maintenances by reserving enough sticky paper in the e-trap
and automatically replacing the paper. The previous e-traps [4–6,8] mostly adopted the
yellow sticky card or the McPhail trap with liquid attractants. It is difficult to automatically
replace the trap materials. They are replaced by termly manual operations. (2) Our design
scheme can duly retrieve too many stuck insects so that the newly stuck insects are not
overlapped on the old ones, and their sampled images are of high quality. The previous
e-traps depend on manually replacing the sticky card or the liquid attractants, which may
mean that too many insects are overlapped on the sticky card or in the liquid due to the
late replacing.

The main disadvantage of our scheme may be the complicated mechanical structures,
as shown in Figure 2d. When installing the new rolled sticky paper, the separated paper
and mask, respectively, need to be correctly merged along the rollers. The installation
process is a bit complex compared with the previous ones based on the yellow sticky card
and the McPhail trap. However, such an installation process is required every several
months. In addition, the complicated mechanical structures and the specifically processed
yellow sticky paper will increase some manufacturing costs of e-traps.

4.2. Discussion on Recognition of Citrus Flies

The recognition of citrus flies is different from the other recognition tasks of crop
pests [54,61–63], e.g., the recognition of paddy pests [62] and tomato pests [63]. In those
recognition tasks, most species of pests are from different families, and their appearances
represent large variances. It is easy to distinguish the different species of pests by viewing
their whole appearances. However, in our task, most species of citrus flies are in the same
or similar families, and different species have a similar appearance. Without viewing
the whole appearance of two citrus flies, it is difficult to differentiate their species. Local
features of some parts of a citrus fly are important for identifying its species. Therefore,
the characteristics of our recognition task mean that the recognition algorithm of citrus flies
is different from the algorithms for recognizing the across-family pests.

Our designed MAMPNet adopts the advanced attention mechanism in feature learn-
ing [35–38]. It assigns different weights for local parts of an insect when recognizing the
species of the insect. Namely, for each species, some specific parts play more important
roles in identifying the species. If adopting the classic deep networks directly, e.g., the
MobileNet-V2 [56], VGG16 [57], DenseNet121 [58], and ResNet50 [48], the roles of local
features from local parts will not be well executed because the global high-level semantic
features are used for the classification of species. Especially, most of the recent research
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on recognizing fruit flies [24,27–30,60] directly utilized or combined the existing classic
networks. Compared with them, in our MAMPNet, the local parts are located by and
focused on the attention mechanism, and their features are combined with the global
features for classifying the species. Therefore, the MAMPNet’s rationale better matches
the way in which entomologists identify species of citrus flies, and it will obtain a higher
recognition accuracy.

5. Conclusions

In this work, we design the prototype of an automatic motor-driven e-trap based on the
yellow sticky paper and computer vision and further propose its algorithms of automatic
control, insect detection, and pest recognition, which together construct the scheme of an
automatic monitoring system of citrus flies. The motor control algorithm based on image
analysis can automatically replace the yellow sticky paper containing attractants according
to the validity period of attractants and the insect density on the e-trap, enabling it to
operate for several months without human maintenance. Furthermore, in order to obtain
the statistics of citrus flies on the e-trap, the simple, effective insect detection algorithm
and the MAMPNet for citrus fly classification are, respectively, proposed to detect new
trapped insects and recognize their species successively. The extensive experiments on the
simulated yellow paper images confirm that our designed e-trap and its algorithms can
effectively monitor the citrus fly pests.

In the future, on the one hand, field tests will be conducted to check and improve our
designed e-trap prototype and corresponding algorithms. Firstly, through the field tests, a
large number of realistic images of citrus fly pests and other insects on the e-trap will be
collected. More images of citrus fly pests will be beneficial to improve their recognition
accuracies by fine-tuning the proposed MAMPNet. Moreover, the attractant efficiency of
the e-trap may be further enhanced by the field tests. On the other hand, the prediction of
large-scale citrus fly pests will be studied, namely, how to utilize the pest data collected
by the distributed e-traps to evaluate the outbreak probability of a large-scale disaster.
It is noted that our e-trap is possibly applicable to the surveillance of other flyable and
attractable Diptera pests. It can be easily applied to monitor other kinds of flyable pests by
using the appropriate insect attractants. Therefore, we will also study how to extend the
application scenarios of the e-trap.

6. Patents

China Patent: A replacing-paper and trapping equipment based on a kind of two-layer
sticky paper with mask for sticking insects. Patent No. ZL201921710966.9.
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Abbreviations

The following abbreviations are used in this manuscript:
CNN Convolution Neural Networks
LBP Local Binary Pattern
HSV Hue Saturation Value
FGVC Fine-Grained Visual Classification
RoI Region of Interest
GAP Global Average Pooling
FC Full Connection
FAR False Accept Rate
FRR False Reject Rate
PDR Positive Detection Rate

Appendix A. Datasets

Appendix A.1. Dataset D1-Citrus Flies

The dataset D1-Citrus flies mainly contains the insect species (Diptera and Hymenoptera)
that could possibly be stuck on the e-trap in China. Their species and number of images are
listed as follows. 1. B. minax (267); 2. B. dorsalis (578); 3. B. scutellata (153); 4. B. cucurbitae
(319); 5. B. tau (926); 6. B. diaphora (181); 7. Apis mellifera (464); 8. Episyrphus balteatus (379); 9.
Vespa bicolor (320); 10. Olistes rothneyi (285); 11. Vespula vulgaris (386); 12. Diplazon laetatorius
(413); 13. Musca domestica (429); 14. Lucilia cuprina (435); 15. Calliphora vicina (417); in total:
15 species, 5952 images.
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