Spatio-temporal population trends of the Mediterranean fruit fly in mixed fruit orchards in Central Greece

Vasilis Rodovitis

Laboratory of Entomology and Agricultural Zoology,

University of Thessaly

Kostas Zarpas¹, <u>Vasilis G. Rodovitis¹</u>, Stella A. Papanastasiou¹, Cleopatra A. Moraiti¹, Eleni Verikouki¹, Nikolaos Patronis¹, Stratos Nikolaou¹ and Nikos T. Papadopoulos^{1*}

¹ Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446, Volos, Magnesia, Greece, *e-mail: nikopap@uth.gr

Introduction

The Mediterranean Fruit Fly (medfly) *Ceratitis capitata*

- Multivoltine pest (3-7 generations/ season in Greece)
- Polyphagous (more than 300 different hosts)
- Invasive, Quarantine Pest
- High biotic potential
- Adaptive and plastic responses to environmental conditions

Infestation and fruit damage

Life cycle in the mixed fruit orchards

Mixed fruit orchards provide optimal conditions for medfly

Mixed Orchard

- Stone, pome and citrus fruits
- Available hosts throughout the fruiting season
- Multiple generations
- The same flies can infest more than one crop

Scope

- Analyze the spatial and temporal dynamics of *C. capitata* in mixed fruit orchards
- Depict effect of altitude on phenology
- Bear new analytical tools to understand population dynamics

Materials and Methods

Climatic profile of the experimental area

Date

Experimental approaches

- Effect of altitude on phenology
 - Adult trapping at different altitudes

- Spatial and temporal population dynamics
 - Effect of hosts of adult captures (citrus, pome, prunus and others)
 - 2008

Trapping systems and attractants

Medfly captures

Effects of altitude

Effect of altitude on seasonal population trends

600 m

350 m

Effects of altitude on male - female captures

Factor	Sig.
Altitude	\bigcirc
Sex	

For every 10 meters increase in altitude, ٠ the rate of captures is decreasing by about 4.3%.

"Event history" graph on seasonal patterns of trap captures

Effect of altitude on adult detection (traps capturing adults)

Date

Seasonal and temporal phenological patterns

Effect of host on seasonal population trends (2008)

Effect of host trap type on captures

Effect of season on detection of males and females

Conclusion

- Altitude strongly affect
 - Population density
 - Seasonal phenology
 - Adult detection
- The host plant strongly affect
 - trap captures and should be considered when designing surveillance activities
- Both Jackson and McPhail type traps (i.e. IPMT, Teprhi) provide sound tools for medfly population monitoring
- Management of the Mediterranean fruit flies in mixed fruit orchards is challenging since population densities is high throughout the fruiting season
- "Demographic" concepts in the analysis of trap capture data provide new insights in the phenology of medfly

Thank you for your attention

Fruit Flies In-silico

Prevention & Management

