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Abstract
Fruit fly ground-dwelling stages (late third instar larvae, pupae, and teneral adults) are susceptible to predation from general-
ist ground-dwelling predators and to infection by entomopathogenic fungi (EPF). The effect of predators can be enhanced 
with cover crops and that of EPF by augmentative releases. However, whether these two biological control methods could 
be combined has not been studied under field conditions yet. Here, we studied in the field whether the enhanced activity of 
predators against the medfly, Ceratitis capitata, already observed in a Lolium arundinaceum ground cover could be impaired 
by a soil application of Metarhizium brunneum. Our results show that C. capitata adult emergence was reduced by this EPF 
for up to three months after fungal application, with the combination of the cover and M. brunneum being the most effec-
tive at reducing C. capitata emergence relative to bare soil (92.5% reduction). Although M. brunneum reduced the activity 
density of ground-dwelling predatory beetles up to 93 days after application, it showed no clear negative effects on earwigs, 
no effects on spiders, and a positive effect on ants up to 65 days after application. Therefore, the combined use of a ground 
cover of L. arundinaceum and M. brunneum against the soil-dwelling stages of C. capitata seems to work synergistically 
and appears as a strong and sustainable control tactic against the medfly and other fruit orchard pests.

Keywords  Entomopathogenic fungus · Ground predator · Lolium arundinaceum · Natural enemies · Conservation 
biological control · Augmentation

Key message

•	 Medfly ground-dwelling stages are susceptible to ground 
predators and entomopathogenic fungi

•	 Ground covers are used as conservation biological con-
trol to enhance the impact of these predators

•	 Augmentative releases of M. brunneum can be used to 
control C. capitata

•	 A cover of tall fescue and M. brunneum was the most 
effective combination against C. capitata

•	 Activity density of ground beetles but not other predators 
was temporarily reduced by M. brunneum

Introduction

The family Tephritidae is the most species-rich family within 
Diptera, with more than 5000 described species (EFSA PLH 
Panel 2020). Among these species, around 35% have been 
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documented to attack fruit and are thus considered as true 
fruit flies (EFSA PLH Panel 2020). The economic impor-
tance of these flies is recognized as major worldwide (De 
Meyer and Ekesi 2016). The Mediterranean fruit fly, Cera-
titis capitata (Wiedemann), is a highly invasive agricultural 
pest, endemic to most sub-Saharan countries and reported 
on more than 300 plant species including fruits, vegetables, 
and nuts (CABI 2023). Fruit rotting following oviposition 
and the consequent larval feeding on mature fruits may 
result in complete yield loss (Weldon 2020). In temperate 
areas, most severe damage occurs in stone fruit and citrus, 
where this species finds a refuge during winter (Jacas et al. 
2010). Economic costs include direct crop losses, control 
and prevention of C. capitata infestation (both pre- and post-
harvest), and limited or loss of access-free export markets 
(Cruz-Miralles et al. 2022). Total damage caused by tephrit-
ids in crop production, harvesting, packing, and marketing 
activities worldwide was estimated to amount to more than 
two billion dollars annually (Enkerlin et al. 2017).

Until recently, the preferred control option for fruit flies 
in general and especially for C. capitata was based on the 
use of insecticides, often in combination with food attract-
ants targeting adult flies (Dias et al. 2022, CABI 2023). 
However, negative effects on biodiversity and human health 
caused by pesticides have prompted National Plant Pro-
tection Organizations to progressively implement policies 
aimed at reducing pesticide use (Mathis et al. 2022). This 
situation has increased the interest in alternative more sus-
tainable methods to control C. capitata, including fruit bag-
ging, sanitation, mass trapping, biological control, or the 
sterile insect technique, often combined in the context of 
area-wide control programs (Pla et al. 2021; Cruz-Miralles 
et al. 2022). Among these methods, biological control is 
becoming increasingly important. In a recent review of the 
biological control of fruit flies, Dias et al. (2022) showed 
that the most studied species was indeed C. capitata. These 
authors also found that 22% (n = 50) of the studies consid-
ered corresponded to natural/conservation biological con-
trol, whereas classical and augmentative biological control 
accounted for 6% (n = 13) and 5% (n = 11) of these studies, 
respectively. Parasitoids were the most studied fruit fly bio-
logical control agent, followed by entomopathogenic fungi 
(EPF), nematodes (EPN), bacteria, and predators. The fruit 
fly stage targeted by parasitoids is mostly the larva within 
the fruit, whereas those targeted by EPF, EPN, and preda-
tors are mostly those occurring in the soil, namely late third 
instar larvae (LIII, which drop from the fruit to the ground, 
burrow in the soil and pupate), pupae, and teneral adults, 
which remain on the ground until they can fly. These stages 
are susceptible to predation by generalist ground-dwelling 
predators (Monzó et al. 2008, 2011) and to infection by 
EPF (Quesada-Moraga et al. 2006; Garrido-Jurado et al. 
2011a; c) and EPN (Kapranas et al. 2023). The effect of 

EPF and EPN can be increased by periodical applications 
of formulated microbials (augmentative biological control) 
(Scheepmaker and Butt 2010; Köhl et al. 2019), while that of 
predators, which include beetles, ants, earwigs, and spiders, 
can be enhanced through habitat manipulation (conserva-
tion biological control) (Cruz-Miralles et al. 2022). Whether 
these two biological control methods could be combined has 
not been studied yet.

A recent study investigated the association between three 
ground cover management options (bare soil, a seeded cover 
of Lolium arundinaceum (= Festuca arundinacea), and a 
mulch of straw), the emergence success of C. capitata, and 
the activity density of the most important groups of ground-
dwelling predators (Cruz-Miralles et al. 2022). Reduced C. 
capitata emergence in the seeded cover of L. arundinaceum 
relative to bare soil (29% reduction) was related to higher 
diversity and activity density of ground-dwelling preda-
tors in the seeded cover, where more complex relationships 
among predators and between them and medfly occurred 
relative to the other options. Three predatory groups (bee-
tles, ants, and earwigs) were negatively related to C. capitata 
emergence in that cover. Although the activity density of the 
most abundant predator group in that study, spiders, was not 
negatively related to C. capitata emergence, their important 
role should not be ruled out. That result could be attributed 
to spiders feeding mostly on either LIII before burial or ten-
eral adult flies but not on buried pupae, two stages which 
were not properly considered in that study. Indeed, Monzó 
et al. (2008) proved that Pardosa cribata Simon (Araneae, 
Lycosidae), the most abundant ground-dwelling spider in 
citrus orchards in eastern Spain, could prey on both LIII 
and adults but not on pupae, with a preference for adult fruit 
flies.

The virulence of EPF toward other tephritids such as the 
olive fruit fly Bactrocera oleae (Rossi) adults and preim-
aginals has been demonstrated both at laboratory and field 
conditions, with even an existing commercial development 
of a control strategy based on the ground application of 
Metarhizium brunneum Petch. (Ascomycota: Hypocreales: 
Clavicipitaceae) beneath the tree canopy targeting preim-
aginals (Yousef et al. 2017; 2018). However, there is a lack 
of such developments for other key tephritids such as C. 
capitata. The pathogenicity of EPF has been widely evalu-
ated for preimaginal C. capitata control in laboratory condi-
tions during the last 20 years (Ekesi et al. 2002; Quesada-
Moraga et al. 2006; Beris et al. 2013), particularly several 
aspects related to the influence of (1) abiotic factors in the 
infection ability (Ekesi et al. 2003; Garrido-Jurado et al. 
2011a, c; Gava et al. 2021), (2) natural enemies (Gava and 
Paranhos 2023), (3) associated endoparasitoids (Ekesi et al. 
2005), and (4) pesticides (Mochi et al. 2006; Yousef et al. 
2015). However, field or semifield experiments evaluating 
any of these interactions together or individually have not 
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been undertaken yet (Gava et al. 2021). Moreover, the use 
of a ground cover in combination with EPF has not been 
dealt with yet. Considering that the adoption of cover crops 
is a key agricultural tactic to achieve the EU’s ambitions 
to reduce EU greenhouse gas emissions by 2030 (Riviere 
et al. 2022), the evaluation of the compatibility of any pest 
control measure targeting the soil with natural or artificial 
ground covers is urgently needed. As to date, we are not 
aware of any study addressing the compatibility of ground 
cover management and the application of EPF to control 
C. capitata; in this study, we have investigated the effect 
of bare soil and a seeded cover of L. arundinaceum when 
either treated or not with M. brunneum on the emergence of 
C. capitata. To ascertain any side-effect of M. brunneum on 
the most relevant groups of ground-dwelling predators, we 
have also evaluated the effect of these treatment combina-
tions on the activity density of the main groups of gener-
alist ground-dwelling predators (spiders, beetles, ants, and 
earwigs). Our objective has been to explore the association 
between these treatment combinations and (1) the emergence 
success of C. capitata; and (2) the abundance of the most 
important groups of ground-dwelling predators of C. capi-
tata. We challenged the hypothesis that the enhanced activity 
of predators in the seeded cover of L. arundinaceum could 
be impaired by the application of M. brunneum, which could 
therefore be incompatible.

Materials and methods

Experimental orchard

Experiments were carried out from June to December 2022 
in a 1 ha citrus orchard located in Les Alqueries (Spain, 39° 
54′ N; 00° 06′ W), already used in previous studies on the 
effects of ground cover management on the emergence of C. 
capitata (Cruz-Miralles et al. 2022). Trees were 20-year-old 
“Clemenules” mandarins [Citrus clementina Tanaka (Ruta-
ceae)] grafted on citrange Carrizo (Poncirus trifoliata (L.) 
Rafinesque × Citrus sinensis (L.) Osbeck). Rows were 6 m 
apart and followed a N-S orientation. Within rows, trees 
were spaced 4 m, drip-irrigated, and maintained weed-free 
by herbicide treatments (glyphosate). Twenty-four adjacent 
trees in two consecutive rows (12 trees per row) in the mid-
dle of the orchard were removed in 2014 and replanted in 
late summer 2019 with 2-year-old clementine trees (same 
scion-rootstock combination as before). These 24 trees were 
individually enclosed in an aluminum cage (4 × 4 × 4 m) 
covered with a rigid nylon mesh (10 × 14 threads cm−2) on 
all sides but one (the western side of the western row and 
the eastern side of the eastern row). These cages received 
one of the two ground management treatments considered 
in this study, which were randomly distributed within each 

row (i.e., 6 cages per treatment and row; see Fig. 1 Sup-
plementary). The first treatment was bare soil by means of 
herbicide application (glyphosate + MCPA). The second 
treatment consisted of a homogeneous cover of L. arundi-
naceum, which was established in early autumn 2019 and 
subsequently mowed twice per season with grass clippings 
left in place. In this treatment, the vicinity of the tree was 
maintained free of L. arundinaceum by mechanical means. 
A datalogger (CEM, model DT-171; www.​cem-​instr​uments.​
com/​en/​Produ​ct/​detail/​id/​980), which continuously moni-
tored temperature and relative humidity values at 1-h inter-
vals, was set in one of the cages. Daily rainfall measurements 
were obtained from the meteorological station of Vila-Real 
(http://​riegos.​ivia.​es/​lista​do-​de-​estac​iones/​vila-​real), which 
is located 5 km NW of the orchard.

Fungal strain, cultivation, and inoculum production

The EAMa 01/58-Su M. brunneum strain used in this study 
was obtained from the culture collection at the Agronomy 
Department of the University of Cordoba. This strain was 
originally isolated from soil in a wheat plantation at Hino-
josa del Duque, Córdoba, Spain. The strain was deposited in 
the Spanish collection of culture types (CECT) with acces-
sion number CECT 20764. This fungal strain was licensed 
to Koppert B.V., Netherlands, in 2021. The cultivation and 
inoculum production for the experiment were performed as 
described by Yousef et al. (2017).

Soil application of the fungal suspension

For each ground management option (bare soil, BS, and a 
seeded cover of L. arundinaceum, LA), cages were randomly 
assigned to one of the following three groups: control, one, 
and two applications of the fungal suspension (C, A1, and 
A2 in Fig. 1 Suppl., respectively) with four replicates (two 
per row) for each treatment * application combination. On 
June 28, 2022, the soil of the cages assigned to A1 and A2 
was sprayed with 1 l of a suspension of M. brunneum EAMa 
01/58-Su strain, which contained 2.5 g of conidia or 1 × 108 
viable conidia, using an atomizer (Yousef et al. 2017). In the 
control cages, the soil was sprayed with 1 l of water. In all 
the experiments and subsequent to fungal application, the 
presence of M. brunneum in the soil was monitored. For this, 
soil samples were collected immediately after the treatment 
and then, once per month, with six completely randomized 
soil samples collected using a soil corer (5 cm in diame-
ter) to a depth of 15 cm. These samples were transferred to 
the laboratory to determine the presence of entomopatho-
genic fungi in the soil using a selective growing medium. 
Briefly, 1 g of the homogenized soil sample was added to 
9 ml of sterile distilled water, and shaken for 60 min. After 
homogenization, aliquots of 100 μl were spread onto Petri 

http://www.cem-instruments.com/en/Product/detail/id/980
http://www.cem-instruments.com/en/Product/detail/id/980
http://riegos.ivia.es/listado-de-estaciones/vila-real
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plates containing Sabouraud glucose agar chloramphenicol 
medium (0.5 g/l). The plates were incubated at 25 °C for 
7–10 days and colony forming units were counted (Garrido-
Jurado et al. 2011a). Based on this monitoring and on results 
of adult emergence (see below), a second treatment was fore-
casted for half of the treated cages (A2 in Fig. 1 Suppl.) 
toward the end of summer–early autumn. At that time heavy 
rains, which could wash the inoculum from the soil, usually 
take place in the study area.

Ceratitis capitata stock colony

Third instar larvae (LIII) of the Vienna-8D53− genetic sex-
ing strain obtained from a mass-rearing facility located in 
Caudete de las Fuentes (Valencia, Spain) were used in our 
assays. These insects were reared on an artificial diet at a 
temperature of 25.8 ± 0.3 °C and 91.5 ± 1.5% RH at dark 
(Pla et al. 2021).

C. capitata management

From June to November 2022, once or twice per month 
(depending on results), around 3000 mature third instar lar-
vae (LIII) were refrigerated (9 °C) and transferred to UJI 
facilities, where they were split in groups of 100. Two of 
these groups were kept in the laboratory and 24 were further 
processed in the field. One of the two laboratory groups was 
introduced into a 10 cm in diameter Petri dish, which was 
wrapped in aluminum foil to keep it dark and transferred 
to a climatic cabinet set at 25:20 °C and a 12:12 L:D pho-
toperiod. The other laboratory group was set on top of a 
21.5 cm diameter and 19 cm high pot containing a mixture 
of vermiculite and peat (1:3; vol:vol) watered to field capac-
ity and similarly transferred to the same climatic cabinet. 
Pupation, adult emergence, and sex ratio were scored. The 
former two values were used as control to correct values 
recorded for field-released insects (see below) while the sex 
ratio was used as reference to detect any difference with 
field-released insects (see below).

The 24 groups of 100 LIII each were eventually released 
in the field, one per cage. Larvae were released in an emer-
gence trap (see Cruz-Miralles et al. 2022 for details) con-
sisting of a 15-cm long and 12 cm diameter toilet soil 
pipe fitted to a bottomless transparent PVC bottle of the 
same diameter and 35 cm long, with a zenithal ventila-
tion hole covered with a mesh to prevent water conden-
sation. The pipe and the bottle were fitted with a rubber 
band. Prior to the release, a hole of the same dimensions 
as the soil pipe was dug by carefully extracting a soil cyl-
inder. Then, the pipe was put in place and the previously 
removed soil cylinder introduced into the pipe. The 100 
LIII were distributed on the surface of the trap, which was 
covered with the bottomless bottle to protect them from 

predation. Two days later the bottles were removed and the 
number of individuals (either larvae or pupae) remaining 
on the top of the trap were counted and removed. This 
figure was considered as representative of unsuccessful 
larval burial (i.e., individuals either dead or fully exposed 
to predation). Then, the trap was left uncovered to allow 
full exposure of the buried individuals to natural enemies 
and abiotic stressors (i.e., rainfall). Based on the tempera-
tures measured in the orchard, the thermal constant and 
the lower development threshold of C. capitata (260 DD 
and 11 °C, respectively; Escudero-Colomar et al. 2008), 
the emergence date was estimated. One week before reach-
ing that date, the bottomless bottle was set again in place. 
At that moment, the bottle included a transparent plastic 
sheet sprayed with tangle-trap® covering the inner wall 
of the bottle. Traps were periodically inspected and adults 
found stuck on the glue were counted, removed, and taken 
to the laboratory for further processing (see below). The 
whole trap was removed after seven days with no adult 
captures. Field unsuccessful larval burial (% of total LIII) 
and adult emergence (% expressed on both total LIII and 
those successfully buried) were calculated based on the 
number of larvae and adults counted. These percentages 
were corrected with the corresponding laboratory values 
(Abbott 1925). As soon as the traps were removed (from 
15 to 30 days after initial setup), a new set of larvae and 
traps was put in place.

Specimens stuck on the glue of the emergence trap were 
taken to the laboratory to ascertain whether they were 
infected by M. brunneum. These flies were immediately 
surface-sterilized with 1% sodium hypochlorite followed 
by three rinses with sterile distilled water for 1 min each. 
They were then placed on sterile wet filter paper in sterile 
petri plates, sealed with parafilm, and kept at 25 °C to be 
inspected for fungal outgrowth on the cadavers (Quesada-
Moraga et al. 2006).

Pitfall traps

From June to December 2022, to identify potential ground 
predators of C. capitata, a pitfall trap was set in each cage 
(24 traps in total). Traps consisted of a plastic jar (12.5 cm 
diam., 12 cm depth), with a plastic funnel fitted to its upper 
edge. A plastic container (250 ml) half filled with a 3:1 mix-
ture of water and ethanol, and 1.25% antifreeze, was placed 
inside the plastic cup. Traps were serviced every 15 days. 
Captures were transported to the laboratory, where they 
were sorted out. Specimens were determined to family level 
under a binocular microscope and categorized into the fol-
lowing generalist soil-dwelling predator groups: Coleoptera 
(Carabidae and Staphylinidae), Dermaptera (Forficulidae), 
Formicidae, and Araneae (Lycosidae).
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Statistical analyses

Corrected unsuccessful larval burial (%), adult emergence 
(%; relative to the initial 100 LIII and to those LIII suc-
cessfully buried in the soil), sex ratio (females/total), adult 
infection (%), and predator counts for Coleoptera, Formici-
dae, Dermaptera, and Araneae (activity density; number per 
trap per day) were modeled using generalized linear mixed 
models (GLMM) with a negative binomial distribution of 
the error and a logit link function, with treatment (M. brun-
neum or control), cover (BS or LA), and date as fixed factors 
and replicate (= cage) as a random factor. All interactions 
(2- and 3-factor) were considered. Once differences along 
time were established, for each date, (1) unsuccessful lar-
val burial and adult emergence were further modeled using 
general linear models (GLM) with a binomial distribution 
of the error and logit link function, and (2) predator counts 
were modeled using GLM with a quasi-Poisson distribution 
of the error and a logit link function. In all cases, treatment, 
cover, and their interaction were considered as fixed factors. 
Models were refined by progressively removing non-signif-
icant (P > 0.05) factors. Akaike information criterion (AIC) 
(Akaike 1974) was used to select the best model. When nec-
essary, pairwise comparisons were made using Tukey post 
hoc test (P < 0.05). The R software (R Core Team 2023) was 
used to fit the models. The package lme4 (Bates et al. 2015) 
was used to fit both GLMMs and GLMs, and the package 
multcomp (Hothorn et al. 2008) was used to perform the 
pairwise comparisons.

Results

Mean monthly values of temperature and relative humid-
ity ranged from 13.3 to 27.6 °C (mean: 21.9 °C) and 55 
to 87.3% (mean: 75.2%), respectively, during the study 
period. The absolute minimum and maximum tempera-
tures ranged from 5.8 to 20.3 °C and 24.9 to 40.3 °C, 
respectively. A total of 321.5 mm of rain were registered 
during this period, with 39.6 mm on June 27, the day prior 
to the application of the fungus, and two episodes of heavy 
rain (> 40 mm in 24 h) on November 11 and 12. From the 
application day to October 5, rain occurred only 8 times 
for a total of 18.7 mm during this 100-d period (Fig. 1).

Fungal inoculum was found in treated cages only and 
no Metarhizium species were found in the untreated cages. 
The concentration of M. brunneum EAMa 01/58-Su strain 
ranged from 5.0·104 to 8.3·105 CFU g−1 soil for bare soil, 
147 and 14 days after treatment, respectively (Fig. 1). As a 
consequence, no additional fungal application was made at 
the end of the summer as initially planned, which eventu-
ally made the number of replicates (cages) for the fungus-
treated cages double than control (8 versus 4 replicates per 
cover for fungus-treated and control cages, respectively). 
Although sentinel LIII were introduced into the cages at 
monthly intervals, no adults could be recovered for those 
released beyond day 87 after the fungal application (Sep-
tember 29, 2022). Therefore, the experiment was discon-
tinued in December 2022.

Fig. 1   Rainfall (bars) and fungal concentration (dots) during the assay. The fungal treatment (arrow) was applied on June 28
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Larval successful pupation in the laboratory was 100%. 
Consequently, no correction was needed for field-col-
lected data. Successful larval burial into the soil (Fig. 2) 
was significantly affected by time since fungal applica-
tion (z-value = − 13.22; P < 0.001) and its interaction with 
fungal application (z-value = − 5.03; P < 0.001) and cover 
(z-value = 13.72; P < 0.001). All other interactions were not 
significant (AIC = 2809.3 and df = 137 for the model). When 
each date was separately analyzed (Table 1), with the excep-
tion of the first date after application, successful burial was 
significantly higher in bare soil relative to L. arundinaceum 
with no clear effect of the fungal application (Table 1).

Adult emergence in the laboratory ranged from 90.5 to 
94.5%. These values were used to correct field-collected 
data (Fig. 2). Field adult emergence (irrespective of whether 
referred to the 100 sentinel LIII released or to those success-
fully buried into the soil) was affected by fungal application 
(z-value = − 2.16; P = 0.030 and z-value = − 1.91; P = 0.050, 
respectively), time since application (z-value = 10.18; 
P < 0.001 and z-value = 8.39; P < 0.001, respectively) 
and the interactions of time with fungal application 
(z-value = − 2.86; P = 0.004 and z-value = − 3.11; P = 0.002, 
respectively) and cover (z-value = − 3.73; P < 0.001 and 

z-value = − 3.14; P = 0.002, respectively). All other interac-
tions were not significant (AIC = 652.8 and 629.2, respec-
tively, and df = 89 in both models). When each date was 
separately analyzed (Tables 2 and 3), with the exception of 
the first date after application, adult emergence was higher in 
bare soil relative to L. arundinaceum and in control relative 
to M. brunneum-treated cages (Tables 2 and 3). As con-
sequence, the efficacy of the different combinations tested 
relative to bare soil at inhibiting adult emergence ranged 
from 59.4 to 92.5% in fungus-treated bare soil and fungus-
treated L. arundinaceum, respectively. The sex ratio of these 
adults ranged from 0.06 to 0.58 females/total, with differ-
ences between dates (AIC = 246.7; z-value = 2.215; df = 71; 
P = 0.026) but no significant effects of the fungal treatment, 
the cover, or their interactions. Adult infection ranged from 
5.1% for fungus-treated bare soil 87 days after the treatment 
to 67.3% for fungus-treated L. arundinaceum 64 days after 
the treatment. However, the low number of adults emerged 
and recovered from fungus-treated cages (Table 2) precluded 
the successful modeling of these results.

The results of the GLMM applied to the activity den-
sity of the different groups of ground-dwelling predators 
are shown in Table 4. Time since fungal application was 

Fig. 2   Fate of the 100 sentinel LIII C. capitata released at different times after fungal treatment (14–129 days) on either bare soil (BS) or a 
seeded cover of L. arundinaceum (LA) and subject to an application of M. brunneum (BS-T, LA-T) or not (BS-C, LA-C)
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significant in all cases, the fungal application was significant 
for all groups except for spiders, the cover was also signifi-
cant in all groups except for ants, and the only significant 
interaction, treatment*time, occurred in earwigs. When each 
group was separately analyzed by date, for beetles, treatment 
was significant (P < 0.05) only 65 and 93 days after treat-
ment, whereas cover was not significant (P > 0.05) 7, 21, 
65, and 135 days after treatment. When significant, beetle 
captures were higher in L. arundinaceum relative to bare 
soil and in those two dates where the treatment was also 
significant, higher values were observed in control cages 
(Fig. 3). On average, staphylinids and carabids represented 
around 50% of total captures each in all four treatment com-
binations. For ants, treatment was significant only 36 and 
65 days after treatment. On both dates, ant captures were 

lower in control cages (Fig. 4). For earwigs neither treat-
ment nor cover or their interaction were ever significant 
(Fig. 5). Finally, for spiders (mostly Lycosidae), cover was 
significant for all dates up to 107 days after treatment, with 
higher spider captures in L. arundinaceum compared to bare 
soil. Afterward, there were no differences between covers 
(Fig. 6).

Discussion

In agreement with previous results (Cruz-Miralles et al. 
2022), the L. arundinaceum cover alone proved effective 
at reducing C. capitata larval burial and adult emergence 
compared to bare soil (14.4 and 48.9% mean reductions, 

Table 1   Statistics (AIC; df; z- and P-values) of the GLM adjusted to larval unsuccessful burial into the soil at different times after fungal treat-
ment and larval unsuccessful burial into the soil (%) and efficacies (%; in brackets) relative to BS-C (Means ± SE)

Within each row, values followed by different letters are significantly different (P < 0.005). Except for time = 34, where the interaction between 
treatment and cover was significant (see Table 2), capital letters refer to the cover as lowercase letters to the fungal treatment

Time (d) AIC df Factor/interactions (z-value; P) Larval unsuccessful burial (%) and efficacy (%; in brackets) rela-
tive to BS-C

Treatment Cover T*C BS-C BS-T LA-C LA-T

14 727.56 21 3.61; 0.001
C < T

− 7.24; < 0.001
LA < BS

ns 35.0 ± 14.0 Aa
–

39.8 ± 8.9 Ab
(7.3)

18.0 ± 12.1 Ba
(0)

21.9 ± 9.9 Bb
(0)

34 731.71 20 − 3.62; 0.001 4.64; < 0.001 3.84; < 0.001 19.8 ± 9.6 b
–

11.9 ± 8.6 c
(0)

34.5 ± 8.4 a
(18.4)

37.9 ± 10.4 a
(22.6)

64 143.55 22 ns
C = T

7.33; < 0.001
LA > BS

ns 0.3 ± 0.3 B
–

0.9 ± 0.4 B
(0)

11.5 ± 4.1 A
(11.3)

7.5 ± 2.8 A
(7.3)

87 185.15 22 ns
C = T

8.22; < 0.001
LA > BS

ns 2.0 ± 1.1 B
–

1.3 ± 0.7 B
(0)

12.5 ± 5.0 A
(10.7)

10.1 ± 3.9 A
(8.3)

129 315.52 45 − 2.62; < 0.001
C > T

13.56; < 0.001
LA > BS

ns 11.8 ± 3.7 Ba
–

7.5 ± 1.2 Bb
(0)

27.0 ± 4.4 Aa
(17.3)

16.0 ± 3.0 Ab
(4.8)

Table 2   Statistics (AIC; df; z- and P-values) of the GLM adjusted to 
adult emergence (% expressed on 100 LIII released) at different times 
after fungal treatment and adult emergence (% expressed on 100 LIII 
released) in bare soil (BS) and a seeded cover of Lolium arundina-

ceum (LA) either treated (BS-T, LA-T) or not (BS-C; LA-C), as well 
as the corresponding efficacies (%; in brackets) relative to BS-C. 
Means ± SE

Within each row, values followed by different letters are significantly different (P < 0.005). Except for time = 64, where the interaction between 
treatment and cover was significant, capital letters correspond to the cover as lowercase letters to the fungal treatment

Time (d) AIC df Factor/interactions (z-value; P) Adult emergence (% expressed on 100 LIII released) and 
efficacies (%; in brackets) relative to BS-C

Treatment Cover T*C BS-C BS-T LA-C LA-T

14 67.722 22 ns
C = T

3.22; 0.001
LA > BS

ns 0.3 ± 0.3 B
–

0.6 ± 0.9 B
(0)

1.9 ± 0.3 A
(0)

2.2 ± 0.8 A
(0)

34 79.031 21 − 3.76; < 0.001
C > T

− 3.97; < 0.001
LA < BS

ns 6.4 ± 0.5 Aa
–

2.9 ± 0.7 Ab
(54.7)

2.7 ± 0.4 Ba
(57.8)

0.4 ± 0.4 Bb
(93.8)

64 215.03 20 − 6.97; < 0.001 − 2.57; 0.010 − 3.06; 0.002 27.2 ± 7.8 a
–

10.6 ± 2.4 c
(61.0)

19.3 ± 7.5 b
(29.0)

2.9 ± 1.4 d
(89.3)

87 110.78 21 − 6.81; < 0.001
C > T

− 6.08; < 0.001
LA < BS

ns 16.0 ± 3.2 Aa
–

6.0 ± 1.1 Ab
(62.5)

6.4 ± 0.5 Ba
(60.0)

0.9 ± 0.7 Bb
(94.4)
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respectively). Due to the short time elapsed between the fun-
gal application and the evaluation of larval burial (2 days), 
as expected, no effect of M. brunneum on burial success 
was detected. However, adult emergence was reduced by M. 
brunneum for up to three months after fungal application, 
with the combination of L. arundinaceum and M. brunneum 
being the most effective at reducing C. capitata emergence 
relative to bare soil (92.5%; Fig. 2). Although M. brunneum 
also reduced the activity density of ground-dwelling preda-
tory beetles (up to 93 days after the application), it showed 
no clear negative effects on earwigs, no effects on spiders, 
and a positive effect on ants (up to 65 days after the applica-
tion), as already observed in olive groves for the same strain 
of M. brunneum (Garrido-Jurado et al. 2011b). Therefore, 
our initial hypothesis that the enhanced activity of predators 
in the seeded cover of L. arundinaceum could be impaired 
by M. brunneum, proved only partially correct. Yet, the com-
bined use of a ground cover and M. brunneum against the 

soil-dwelling stages of C. capitata is compatible and they 
seem to work synergistically.

The lack of heavy rain from the start of the assay until 
mid-autumn (Fig. 2) could explain the long-term effect of 
M. brunneum on C. capitata observed in both bare soil and 
the L. arundinaceum cover. Indeed, the inoculum could be 
still detected in the soil 150 days after treatment at a con-
centration of 5 × 104 CFU g−1. Surprisingly, almost 40 and 
200 mm of rain, which could have washed the fungus from 
the upper layers of the soil where C. capitata pupates, were 
registered around mid-October and mid-November, respec-
tively. This higher-than-expected persistence of M. brun-
neum (keep in mind that a second fungal application toward 
the end of the summer had been initially planned) could be 
an important asset of M. brunneum. Indeed, field experi-
ments have shown that this fungus can persist over 250 days 
in the soil (Hernández et al. 2023). This result, though, could 
also be related to M. brunneum multiplying in the soil when 

Table 3   Statistics (AIC; df; z- and P-values) of the GLM adjusted to 
adult emergence (% expressed on LIII successfully buried) at differ-
ent times after fungal treatment and adult emergence (% expressed on 
100 LIII successfully buried) in bare soil (BS) and a seeded cover of 

Lolium arundinaceum (LA) either treated (BS-T,LA-T) or not (BS-C; 
LA-C), as well as the corresponding and efficacies (%; in brackets) 
relative to BS-C. Means ± SE

Within each row, values followed by different letters are significantly different (P < 0.005). Except for time = 64, where the interaction between 
treatment and cover was significant, capital letters correspond to the cover as lowercase letters to the fungal treatment

Time (d) AIC df Factor/interactions (z-value; P) adult emergence (% expressed on 100 LIII successfully bur-
ied) and efficacies (%; in brackets) relative to BS-C

Treatment Cover T*C BS-C BS-T LA-C LA-T

14 65.286 22 ns
C = T

2.82; 0.004
LA > BS

ns 0.9 ± 1.0 B
–

0.9 ± 0.5 B
(0)

2.4 ± 0.3 A
(0)

2.8 ± 1.1 A
(0)

34 90.024 21 − 3.99; < 0.001
C > T

− 3.07; < 0.001
LA < BS

ns 8.3 ± 1.5 Aa
–

3.9 ± 1.3 Ab
(53.3)

4.2 ± 0.8 Ba
(49.6)

2.1 ± 2.2 Bb
(74.8)

64 223.33 20 − 6.92; < 0.001 − 1.64; 0.10 − 3.32; < 0.001 27.3 ± 7.8 a
–

10.7 ± 2.5 c
(60.9)

22.7 ± 9.5 b
(17.0)

3.1 ± 1.4
(88.8)

87 110.21 21 − 6.89; < 0.001
C > T

− 5.52; < 0.001
LA < BS

ns 16.4 ± 3.2 Aa
–

6.1 ± 1.1 Ab
(62.7)

7.3 ± 0.5 Ba
(55.1)

1.0 ± 0.7 Bb
(93.8)

Table 4   Statistics (AIC; df; z- and P-values) of the GLMMs adjusted 
to activity density of Coleoptera, Formicidae, Dermaptera, and Ara-
neae. Treatment (control, C, and M. brunneum, T) and cover (bare 

soil-BS, L. arundinaceum cover-LA) were considered as a fixed fac-
tors and time as a random factor

1 See text and Figs. 2, 3, 4 and 5 for differences along time and the interaction treatment * time for Dermaptera

Predator group df Factor/Interactions (z-value; P)

Treatment (A) Cover (B) Time (C) A * B A * C B * C A * B * C

Coleoptera
AIC = 540.1

282 − 2.13; 0.033
C > T

8.88; < 0.001
LA > BS

3.91; < 0.0011 ns ns ns ns

Formicidae
AIC = 850.9

283 2.40; 0.016
C < T

ns
LA = BS

− 3.60; < 0.0011 ns ns ns ns

Dermaptera AIC = 292.1 281 − 1.47; 0.143
C < T

5.09; < 0.001
LA > BS

− 2.81; 0.0051 ns 2.12; 0.034a ns ns

Araneae
AIC = 573.0

283 ns
C = T

10.51; < 0.001
LA > BS

− 2.50; 0.0121 ns ns ns ns
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insect hosts are present, as shown in studies where fungal 
concentration increased in the presence of susceptible hosts 
(Vestergaard et al. 2003; Meyling and Eilenberg 2007; EFSA 
2020). The infected teneral adults of C. capitata recovered 
in our study can be taken as evidence of the reproduction of 
M. brunneum EAMa 01/58-Su strain in the soil. Interest-
ingly, our methodology, which included the washing of the 
adults captured in the traps before their processing, likely 
underestimated the impact of M. brunneum on emerged flies, 
as the percentage of infested insects should most probably 
be higher than that of infected ones. Infection of non-target 
insects with M. brunneum following its soil application has 
been documented for Coleoptera in Danish alfalfa fields 
(Vestergaard et al. 2003) and Coleoptera and Hemiptera in a 
Danish fir plantation (Nielsen et al. 2006). Therefore, fungal 
infection of non-target insects could explain the lower activ-
ity density of predatory beetles recorded in fungus-treated 
compared to control plots (Table 4; Fig. 3). A completely 
different situation occurred to the other three groups of pred-
ators examined in this study (ants, earwigs, and spiders). 
As soil-dwelling arthropods have co-evolved with patho-
genic microorganisms, which are widespread in the soil, like 
EPF, these arthropods have developed strategies to cope with 
infection (Vanninen et al. 1999). In turn, these strategies 
have been overcome by entomopathogenic microorganisms 

in an ongoing arms race (Ortiz-Urquiza and Keyhani 2013). 
Tephritids, for instance, present a puparium, which makes 
the pupal stage less susceptible to EPF (Ekesi et al. 2002). 
This has been related to the nature of the puparium, which 
originates from the cuticle of LIII, which remains in teph-
ritids as an extra protecting layer for the pupa conferring a 
barrier to penetration by EPF (Ekesi et al. 2002). Indeed, 
the cuticle is the first and major protective barrier against 
pathogen infections in arthropods. Puparia, though, do not 
occur in ants, which did even better in M. brunneum-treated 
than in control plots, in spiders, for which this fungus was 
neutral, and earwigs. Ants, produce antimicrobial secre-
tions inhibiting EPF (Bot et al. 2001; Rodrigues et al. 2009; 
Garrido-Jurado et al. 2011b), and can avoid and differen-
tially manage prey depending on their infectious potential 
(Pereira and Detrain 2020), a phenomenon observed in lar-
vae of Chrysoperla carnea (Stephens) (Neuroptera: Chrys-
opidae) as well (Ríos-Moreno et al. 2018). Additionally, 
ants, as other eusocial insects, have evolved many effective 
defense mechanisms against pathogens (Cremer et al. 2007; 
Meunier 2015), like self- and allo-grooming (Reber et al. 
2011) or nest cleaning (Bot et al. 2001; Jackson and Hart 
2009; Diez et al. 2012). These behaviors, which comple-
ment individual immune defense are called social immu-
nity (Diehl and Meunier 2018). Because Cruz-Miralles et al. 

Fig. 3   Coleoptera activity density in 4 × 4 × 4   m3 cages with either 
bare soil (BS) or a seeded cover of L. arundinaceum (LA) combined 
with a treatment of M. brunneum (T; applied on June 28, 2022) or 
control (C). Pitfall traps were sampled every 15 days from treatment 

to 11 December, 2022; Dots and triangles represent the measured 
values as lines, the GLMMs fitted. Lines are significantly different 
(P < 0.050, see Table 4)
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(2022) identified the occurrence of intra-guild interference 
(which could include competition, predation, or risk avoid-
ance behavior) between ants and beetles in a cover of L. 
arundinaceum, the effective defense mechanisms identified 
in ants may have allowed this group to have an additional 
advantage over ground-dwelling beetles resulting in an ant-
mediated negative effect of M. brunneum on beetles. Hence, 
the negative effects observed on beetles in our study (Fig. 3) 
could be attributed to both the direct and indirect effects of 
fungal application.

Social immunity is not exclusive to eusocial insect spe-
cies, like ants, bees, or termites, and can be found in less 
complex forms of group living, such as the simple family 
units of earwigs. In these units, parents may cover the nest 
with feces with antimicrobial activity (Diehl et al. 2015) 
and females, which do not avoid EPF-contaminated environ-
ments, can mitigate the associated costs of pathogen expo-
sure by adjusting their level of egg care (Diehl and Meunier 
2018). In particular, the presence of pathogens shortened 
the duration of egg abandonment, which favors the removal 
of pathogens from the egg surface (Boos et al. 2014) and 
favored the construction of a nest, a form of hygienic 

behavior that may help cleaning the nest from pathogen 
spores by shifting the sands around (Arathi et al. 1999). 
Same as with ants, social immunity in earwigs could explain 
the lack of clear negative impacts of the application of M. 
brunneum on the activity density of this group of omnivo-
rous predators (Fig. 5). Although Fischhoff et al. (2018) 
reported reduced survival of the wolf spider Schizocosa 
ocreata (Hentz) (Araneae: Lycosidae) after soil application 
of M. brunneum in a field microcosm study, these authors 
suggested that potential interference between fungal appli-
cation and S. ocreata should be examined at larger scales. 
Our study provides evidence of absence of impact of M. 
brunneum EAMa 01/58-Su strain on ground-dwelling spi-
ders (Fig. 6). To sum up, these results point at this strain as 
mostly safe for the predatory guild of C. capitata occurring 
in the soil. The harmful effects detected on beetles disap-
peared three months after the fungal application. Therefore, 
the simultaneous use of a ground cover of L. arundinaceum 
as a conservation biological control method to increase the 
populations of the predators of C. capitata, and that of M. 
brunneum as an augmentative biological control method, 
can enhance the control efficacy against the soil-dwelling 

Fig. 4   Formicidae activity density in 4 × 4 × 4   m3 cages with either 
bare soil (BS) or a seeded cover of L. arundinaceum (LA) combined 
with a treatment of M. brunneum (T; applied on June 28, 2022) or 
control (C). Pitfall traps were sampled every 15 days from treatment 

to 11 December, 2022; Dots and triangles represent the measured 
values as lines, the GLMMs fitted. Lines are significantly different 
(P < 0.050, see Table 4)
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stages of this fruit fly. Moreover, as the use of L. arundina-
ceum also favors the conservation along the year of some key 
above-ground natural enemies of other important fruit pests, 
like mites, thrips, and aphids (Aguilar-Fenollosa et al. 2011a, 
b, c; Aguilar-Fenollosa and Jacas 2013; Gómez-Marco et al. 
2015; Gómez-Martínez et al. 2018), such a ground cover 
appears as a strong and sustainable conservation biological 
control method against fruit orchard pests.

Commercial fruit orchards, including citrus, usually con-
tain one single cultivar or two, when they are self-incom-
patible, but usually reach harvest maturity at around the 
same time. As fruit flies prefer fully ripe fruit to oviposit 
(Aluja and Mangan 2008), most fruit within an orchard 
become susceptible to C. capitata around the same time. 
The window period for C. capitata oviposition could extend 
for about two months, from the moment when fruit become 
receptive until unharvested fruit either mummify or decom-
pose and can no longer support C. capitata immature devel-
opment (this window would shrink in case that sanitation is 
applied to unharvested fruit). Therefore, one single treatment 
of M. brunneum applied before harvest, with an efficiency 
extending up to three months, could be enough to reduce 
the emergence of flies developing on those fruits. Only in 
case of heavy rain, a second treatment could be advisable. 
Because such a treatment would not reduce damage in the 

orchard where the application takes place during the ongo-
ing season but reduce the density of further developing adult 
populations, it could ideally be part of an area-wide IPM 
program, where this ground application could target hotspots 
on a collective basis. To calculate the cost for the farmer of 
the different combinations considered in this study, we have 
followed (1) Aguilar-Fenollosa et al. (2011c) for the estab-
lishment and maintenance of bare soil and the seeded cover 
of L. arundinaceum and (2) Sosa-Gómez (2017) and Lee 
et al. (2023) for the soil application of M. brunneum. Based 
on these calculations, the most cost-effective tactic would be 
the use of a ground cover of L. arundinaceum in combina-
tion with a single soil application of M. brunneum (Table 5).
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Fig. 5   Dermaptera activity density in 4 × 4 × 4   m3 cages with either 
bare soil (BS) or a seeded cover of L. arundinaceum (LA) combined 
with a treatment of M. brunneum (T; applied on June 28, 2022) or 
control (C). Pitfall traps were sampled every 15  days from treat-

ment to 11 December, 2022; Dots and triangles represent the meas-
ured values as lines, the GLMMs fitted. Lines are significantly 
different(P < 0.050, see Table 4)
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Fig. 6   Araneae activity density in 4 × 4 × 4  m3 cages with either bare 
soil (BS) or a seeded cover of L. arundinaceum (LA) combined with 
a treatment of M. brunneum (T; applied on June 28, 2022) or control 
(C). Pitfall traps were sampled every 15  days from treatment to 11 

December, 2022; Dots and triangles represent the measured values as 
lines, the GLMMs fitted. Lines are significantly different (P < 0.050, 
see Table 4)

Table 5   Cost-effectiveness of the different management options for the ground cover against C. capitata: bare soil either by use of herbicides 
(BS-herb) or mechanical means (BS-mech), a seeded cover of L. arundinaceum, and an application of M. brunneum 

Adult emergence values were obtained as means from efficacies reported in Table 2
1 Cost in case that a second treatment with M. brunneum is required (i.e., heavy rain)

Ground cover/treatment Costs (€ ha−1) Total cost
€ ha−1 (A)

Adult emergence 
reduction
% (B)

A/B

BS-herb
199.2

BS-mech
51.0

L. arundi-
naceum
38.0

M. brunneum
35.0

BS-herb ✓ 199.2 – –
BS-mech ✓ 51.0 – –
BS-herb. + M. brunneum ✓ ✓ 234.2–269.21 59.4 3.9–4.5
BS-mech. + M. brunneum ✓ ✓ 86.0–121.01 59.4 1.4–2.0
L. arundinaceum ✓ 38.0 48.9 0.8
L. arundinaceum + M. brunneum ✓ ✓ 73.0–108.01 92.5 0.8–1.2
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